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Sheaf cohomology is a big topic. This is a more-or-less self contained note that produces sheaf
cohomology on an arbitrary Grothendieck topos. We start by trying to explain the high-level way
to define cohomology, and show informally how it is relevant to distinguish the circle from the line.
Then we prove some general results on abelian categories, and finally, we build cohomology groups.
The only main result that is not proven is Theorem 39, which is the reason why cohomology is an
homotopical invariant.

All our functors are properly enriched.
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1 General idea
Before entering in the detail, we give a rough outline of the construction of sheaf cohomology in a
Grothendieck topos. Then we discuss what kind of behavior it can detect, and how it does that.

1.1 What is sheaf cohomology
As always with homological algebra, the goal is to find homotopical invariants of topological
spaces. Sheaf cohomology allows us to be a little bit more general, and provides invariants for
any Grothendieck site. A site (C, J) is a category C together with a topology J that specifies open
covers of objects of C. More precisely, given an object c ∈ C, we get a set Jc whose elements are
sieves on c. A sieve on c is a family of morphisms with codomain c, closed under precomposition.
Typically, if (X,O) is a topological space, then seing (O,⊆) as a posetal category, a sieve on
U ∈ O will be a collection of subsets of U , closed under inclusion. The axioms for Grothendieck
topology will then ensure that such a sieve constitutes an open cover of U , and the canonical
Grothendieck topology associated to any topological space is therefore the collection of all open
covers. The recipe to do sheaf cohomology is as follow. We fix A, an abelian category, i.e. a
category where ”abelian group theory” works, like, of course, the category of abelian groups, or
that of commutative rings. First, we have the setup, it consists of two parts.

1. Select your base space, that is a Grothendieck site (C, J). Of course, now that we have a site,
we get a topos for free, and we let A(C) be the associated Grothendieck topos.

2. Select an A-valued sheaf F : Cop → A, that is a presheaf, which is continuous with respect
to the topology on C. This sheaf acts as data that we put on our space. On each c ∈ C, we
have some data (an abelian object in A) given by Fc, that behaves coherently with respect
to the morphisms. This is the presheaf part of the sheaf. To be a sheaf, a presheaf needs
to respect the sheaf condition. Roughly, it means that if a bunch of morphisms {ci → c}i∈I

covers c (think U = ∪iUi in the case of topological spaces), then the data {Fci}i can be used
to reconstruct exactly the data of Fc.

So we have an ambient space (a category C) and some data associated to this space (a sheaf
F : Cop → A). This is all of the inputs of sheaf cohomology. We will soon produce objects of A:

Hq(C, F )

for each q ∈ N, that will be our cohomology groups (or ring, etc, depending on A).
Second, to define the cohomology groups, we proceed as follow. We first have to find an injective

resolution of F , that is, an exact sequence

0 → F → I0 → I1 → I2 → . . .

where each Ik is an injective sheaf, satisfying the lifting problem against all monomorphisms. Next,
we apply the global section functor. The global section functor is E(1,−). It is called the global
section for the following reason. Suppose that our sheaf topos A(C) comes from a topological space
(X,O), then the terminal sheaf is represented by X. Thus, applying the global section to a sheaf
F yields, via Yoneda, F (X): the data that the sheaf associates to the whole space, thus the global
data. Historically, the elements s ∈ F (U) were called sections, as the sheaf one was working with,
the structure sheaf, dealt with actual sections of some maps. The goal was then to find local
sections of the maps, that is sections defined only on opens sets U ∈ X, and then look how this
data can be patched together to form a global section on the whole X. This is exactly what sheaf
cohomology measures.

So we have the global section functor E(1,−). For purely formal reason, it is left-exact. Indeed,
it preserves, like all hom-functors, limits. However, it is not necessarily right-exact. And this defect
of right-exactness is what we will measure. To do that, recall that we have an exact sequence

0 → F → I0 → I1 → I2 → . . .

Applying E(1,−) to it will give a sequence, that is exact if and only if the functor is right-exact.
Thus in general, we will simply have a cochain complex

0 → E(1, F ) → E(1, I0) → E(1, I1) → E(1, I2) → . . .
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We do not really care about 0 → E(1, F ), and simply want to measure the exactness of

0 → E(1, I0) → E(1, I1) → E(1, I2) → . . .

Now, as it is standard in homological algebra, we measure the defect of exactness by letting:

Hq(C, F ) := ker(E(1, Iq) → E(1, Iq+1))
im(E(1, Iq−1) → E(1, Iq)) .

If the sequence is exact at q, then the numerator and the denominator are isomorphic and the
qth cohomology group is 0, else, there is some lack of exactness, whose structure is encoded in
Hq(C, F ).

1.2 Why a line is not a circle
We know how how to define cohomology groups, but this does not tell us what kind of topological
information it gives on the space. Cohomology is a homotopical invariant, that is, two homotopic
spaces will have the same cohomologies (the converse is highly false). This fact is hidden when we
chose the injective resolutions, injective objects are fibrations in the appropriate model structure,
thus we are simply doing a fibrant replacement of our sheaf of coefficients. So, why a line is not a
circle?

The presentation above was quite abstract and general. In fact, we can specialize this a little
bit, and get a feel of more hands-on problems. Suppose we have G → H, an epimorphism of
sheaves. It is an interesting notion. For a map of sheaves to be an epi, it is not necessary that
Gc → Hc is epi for all c, it merely suffices that is is epi locally, that is for all y ∈ Hc, there is a
cover {ci → c}i of c such that the restriction of y to ci is in the image of Gci → Fci. Then, it
may well be the case that there is some section s ∈ Hc that is the image of no t ∈ Gc trough the
map Hc → Gc, even though, the restriction of the section s to each ci is the image of some ti in
Gci. This is why a line is not a circle, and this is something that cohomology detects. Let us be
more precise, and compute the first cohomology group of the line and of the circle, with constant
coefficients, and see where the above phenomenon happens for the circle and gives a non trivial
first cohomology group.

We need some theory first. Suppose we have the following exact sequence of sheaves:

0 → F → G → H → 0.

This means exactly that the map F → G is mono while G → H is epi. General results of
homological algebra yields that, in this case, there is an exact sequence of cohomology

· · · → Hq(C, F ) → Hq(C, G) → Hq(C, H) → Hq+1(C, F ) → . . .

This is great. If we can control the cohomology of G and H, then exactness will give us the
cohomology of F . A very common thing to do is to choose the sheaf G to be flabby. A sheaf is
flabby whenever we can always reconstruct global sections from local sections, thus such a sheaf
has vanishing cohomology in positive degree. It is also quite easy to compute zero-th cohomology
groups, indeed by definition we have:

H0(C, F ) = E(1, C)

and if C has a terminal object 1, then this is F (1) by Yoneda. So suppose we want to compute
some first cohomology group

H1(C, F ).
What we just describe tells us that if we can find F ↪→ G with G flabby, then we are done. Indeed,
take

0 → F ↪→ G ↠ G/F → 0
where G/F is the quotient sheaf. This is an exact sequence. Then by the above remark we have a
chunk of exact sequence

H0(C, G) → H0(C, G/F ) → H1(C, F ) → H1(C, G).

and we know that G is flabby, thus H1(C, G) = 0, and we know what are the zero-th cohomology
groups, hence our exact sequence becomes

G(1) → G/F (1) → H1(C, F ) → 0,
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which is to say that
H1(C, F ) ≃ coker(G(1) → G/F (1)).

Let us do that with the line and the circle. Let us call X to be either the line [0, 1], or the
circle S1. We wish to compute

H1(X,Z),

where Z is the constant sheaf. As our space is connected, the constant sheaf really act as the
constant presheaf. The category C is the posetal category where objects are open sets U ⊆ X, and
morphisms are inclusions. We construct the following presheaf

G(U) := {f : U → R | f continuous},

and morphisms are given by restrictions. It is in fact a sheaf, for any open cover U =
⋃

i Ui, if we
have functions fi : Ui → R such that fi and fj agree on Ui ∩ Uj , then we can patch this data into
one unique function f :

⋃
i Ui → R. We embed

F ↪→ G

by seeing n ∈ Z as the constant function n ∈ R. What is left to do is compute the quotient sheaf
G/F , this is where everything happens. It is at this step that the structure of the open sets will
create some interesting behaviors. Indeed, colimits of sheaves are not computed pointwise. We
first need to forget that we are dealing with sheaves, and compute the colimits pointwise with our
sheaves seen as presheaves. We then obtain a presheaf, and it is the sheafification of it that will
be the colimit sheaf.

So computing the quotient G/F seen as presheaf, we get simply

G/F (U) = {f + Z | f ∈ F (U)}.

The sections of G/F (U) are functions f : U → R such that f = f ′ if f − f ′ is constant to an
integer. Is this a sheaf? It depends on the structure of the open covers!

To understand that, we need to answer the following question. Let f, g : U → R be functions.
What does f + Z = g + Z is telling us? Without loss of generality, let us rather compute what
happens when f +Z = Z. In a first case, suppose U is path connected, with center of contraction
u. Then f(u) = n ∈ Z. Now take any other point v ∈ U , take a path ϕ : u → v, and assume that
f(v) ̸= n, meaning that we can consider i = inf{j | f ◦ ϕ(j) ̸= n}, which is a strictly positive real
number. By continuity, lim

ε→0
f ◦ϕ(i±ε) = f ◦ϕ(i). If f ◦ϕ(i) = n, then we take the limit above with

i+ ε, otherwise we take the limit below with i− ε, and in both cases we reach a contraction. The
conclusion of this little topological argument is that the sheaf condition propagates along paths.
Now, in a second case, suppose we have a space U = V

∐
W , with, say, V and W path connected.

Then by a similar argument, we prove f +Z = Z is f = nV on V and f = nW on W . Do we have
nV = nW ? No, because the two spaces V and W have no way to communicate, they are disjoint.
A little bit more generally, we are saying that f + Z = g + Z, means that f − g is constant on
U , but this constant need to be the same only on each connected component. Let us call these
choices of constants degrees of freedom. This is what happens during sheafification, let us see how
this fact changes the cohomology.

We are now very close to the cohomology groups. The key point is that when we decompose
[0, 1] = U ∪ V , with U and V two non-empty open intervals, then U ∩ V is contractible, thus the
sheaf condition is that some fU + Z = fV + Z, and this will have one degree of freedom, on the
contractible intersection. However, for the circle, if we write S1 = U ∪V , with U, V proper subsets,
path connected, non empty, then U ∩V is always made of two disconnected pieces. Thus the sheaf
condition fU +Z = fV +Z has two degrees of freedom. Then, loosely speaking, when we compute
the cokernel, we realize that we can kill only one degree of freedom. Indeed, G(U) → G/F (U)
sends a map f to f + Z, thus if f + Z is locally constant, then we can choose f to be only one
of these constants, on only one of the connected piece. Thus, (and we can show that with precise
computations) one proves that H1(X,Z) = Zk−1 where k is the degree of freedom, and the minus
one stands for the one that we can kill by the surjection. That is,

H1([0, 1],Z) = 0
H1(S1,Z) = Z.
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2 Abelian categories
With these ideas in mind, we build some general results of abelian category, that will be useful to
define general cohomologies in the next section.

2.1 First definitions
Definition 1: An additive category is an Ab enriched category with finite coproducts. More
precisely, it is a category C such that for all c, d ∈ C, C(a, b) has a structure of abelian group, and
the compositions:

C(b, c)× C(a, b) → C(a, c)

are bilinear.

Remark 2: For all c, d in an additive category, we always have the zero morphism 0c,d ∈ C(c, d),
which is the identity of the abelian group.

Lemma 3: In a additive category, for all f : c → d, we have 0d ◦ f = 0c,d and f ◦ 0c = 0c,d.

Proof. (Lemma 3) 0 ◦ f = (0− 0) ◦ f = 0 ◦ f − 0 ◦ f = 0, and dually.

Lemma 4: An additive category has a zero object.

Proof. (Lemma 4) We have by definition an initial object ⋆. We show that it is also terminal.
First, id0 has to be the identity of the only element in the group C(⋆, ⋆). Consider the zero
morphism of C(c, ⋆), and take any f : c → ⋆. Then f = id⋆ ◦ f = 0 ◦ f = 0. Therefore, f is also
the zero morphism of C(c, ⋆), which proves uniqueness, hence that ⋆ is terminal.

Proposition 5: Let C be additive. Then any finite coproduct is also a finite product.

Proof. (Proposition 5) Take a binary coproduct c ⊔ d, and consider the following diagram:

c d

c ⊔ d

c d

(idc,0) (0,idd)

id

ιc ιd

id

We will show that (c ⊔ d, (idc, 0), (0, idd)) is a product. Consider f : a → c and g : a → d and call
ϕ := ιcf + ιdg : a → c ⊔ d. We compute:

(idc, 0) ◦ (ιcf + ιdg) = (idc, 0)ιcf + (idc, 0)ιdg = idcf + 0g = f,

and dually
(0, idd) ◦ (ιcf + ιdg) = g.

Therefore, the map ϕ is a morphism of cone. Observe that

ιc(idc, 0) + ιd(0, idd) = idc⊔d,

as (ιc(idc, 0) + ιd(0, idd)) ◦ ιc = ιcidc + ιd0 = ιc, and similarly for ιd. Thus by universal property
of the coproduct, it has to be the identity. Now suppose we have ϕ′ : a → c ⊔ d commuting with
the projections. Then:

ϕ′ = idc⊔d ◦ ϕ′ = (ιc(idc, 0) + ιd(0, idd)) ◦ ϕ′ = ιc(idc, 0)ϕ′ + ιd(0, idd)ϕ′ = ιcf + ιdg = ϕ.

Finally, we conclude the proof by induction for arbitrary finite products.

Definition 6: Let C be an additive category, and f : c → d. The kernel of f , if it exists, is ker(f)
the pullback of f along the unique morphism 0 → d. Dually, the cokernel coker(f) is the pushout
of f along the unique morphism c → 0.
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Definition 7: An abelian category C is an additive category such that:

1. Every morphism admits a kernel and a cokernel.

2. Every mono is a kernel, and every epi is a cokernel.

Remark 8: The category Ab is indeed abelian. It is customary to write X/Y for the cokernel of
a monomorphism Y ↪→ X. This recovers the notion of quotient group in Ab.

Proposition 9: An additive category with all kernels and cokernels is abelian if and only if for
all f , the canonical map

coker(ker(f)) → ker(coker(f))

is an isomorphism.

Definition 10: If f : c → d is a morphism in an abelian category, we define its image, im(f), to
be the kernel of its cokernel. According to Proposition 9, we could also have chosen the cokernel
of its kernel.

Lemma 11: In an abelian category, f : c → d is mono if and only if ker(f) ≃ 0, and it is epi if
and only if im(f) ≃ d.

Proof. (Lemma 11) Suppose f is mono, then as pullback preserves monos, we have ι : ker(f) ↪→ 0,
thus ker(f) ≃ 0. Indeed, if we have an inclusion into a zero object, then it is an isomorphism.
To prove this, consider a mono ι : a ↪→ 0. Next for any other a′, we have the zero morphisms
0a′,a : a′ → a. If we have two morphisms h, k : a → a′, then ιh = ιk as 0 is terminal, hence
h = k, as ι is mono. Conversely, suppose ker(f) ≃ 0, and take h, k : c′ → c equalized by
f . Then f ◦ (h − k) = 0c′,d, thus via universal property of the pullback, h − k factors trough
c′ → ker(f) ≃ 0 → c, hence is the zero morphism, thus h = k.

Dually, f is epi if and only if coker(f) ≃ 0. Thus suppose coker(f) ≃ 0, then im(f) =
ker(coker(f)) = d, as the pullback of a map along itself is the identity. Conversely, suppose
im(f) = d, then we have the following pushout:

ker(f) 0

c d
f

which proves, via universal property, that f is epi.

Remark 12: Therefore, in an abelian category, every morphism f : c → d factorises uniquely as
an epi followed by a mono:

c
p
↠ im(f) ι

↪→ d.

Lemma 13: Suppose we have a mono f : c → d, then ker(d ↠ d/c) ≃ c.

Proof. (Lemma 13) We compute:

ker(coker(f)) ≃ coker(ker(f)) ≃ coker(0c) ≃ c.

where the first isomorphism uses Proposition 9, and the second Lemma 11.

Definition 14: In an abelian category, a sequence

· · · → cn−1
fn→ cn

fn+1→ cn+1 → . . .

is long exact if for all n, we have im(fn) ≃ ker(fn+1). A sequence is short exact if only three
consecutive cn are non zero, and we write simply:

0 → a
f→ b

g→ c → 0.

Proposition 15: In an abelian category, the following are equivalent.

1. 0 → a
f→ b

g→ c → 0 is short exact.
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2. f is mono, g is epi, and im(f) = ker(g).

Proof. (Proposition 15) The condition im(f) = ker(g) is equivalent to exactness at b, and Lemma
11 proves exactness at a and c. Indeed im(0 → a) = 0, which is ker(f) if and only if f is mono,
and ker(c → 0) = c which is im(g) if and only if g is epi.

2.2 Exactness of functors
Definition 16: A functor F : C → D is left exact if it preserves finite limits, and right exact if it
preserves finite colimits.

Lemma 17: A functor F : C → D between abelian categories is:

1. Left exact if and only if it preserves (finite) direct sums and kernels;

2. Right exact if and only if it preserves (finite) direct sums and cokernels.

Proof. (Lemma 17) It is a consequence of the following facts:

1. finite (co)limits can be computed from finite (co)products and (co)equalizers;

2. direct sums of abelian groups are coproducts which are products;

3. the (co)equalizer of f and g is the (co)kernel of f − g.

Proposition 18: Let F : C → D be a functor between abelian categories. For all exact sequences

0 → a → b → c → 0,

in C, we have

• F is left exact if and only if for all short exact sequence 0 → a → b → c → 0 in C, the
sequence 0 → F (a) → F (b) → F (c) is exact in D.

• F is right exact if and only if for all short exact sequence 0 → a → b → c → 0 in C, the
sequence F (a) → F (b) → F (c) → 0 is exact in D.

• F is exact if and only if for all short exact sequence 0 → a → b → c → 0 in C, the sequence
0 → F (a) → F (b) → F (c) → 0 is exact in D.

Proof. (Proposition 18) Suppose F is left exact. Since

0 → a
ι→ b

p
↠ c → 0,

is short exact, we have that 0 → a is the kernel of ι, and ι is the kernel of p. Therefore, by Lemma
17

0 → F (a) F (ι)→ F (b) F (p)→ F (c),

is again exact. However, to conclude that the full sequence is exact, we would need that F preserves
the cokernel c → 0. Conversely, for the preservation of kernel, choose f : c → d, and factor it as
c

f ′

→ im(f) → d. Then ker(f) = ker(f ′) and 0 → ker(f) → c → im(f) → 0 is exact, hence so is
0 → F (ker(f)) → F (c) → F (im(f)), and thus F (ker(f)) is the kernel of F (f). For the coproduct,
notice that 0 → a → a ⊔ b → b → 0 is exact in any abelian category, thus we have two exact rows
in:

0 F (a) F (a) ⊔ F (b) F (b) 0

0 F (a) F (a ⊔ b) F (b)
idid

and the snake lemma shows that F (a) ⊔ F (b) → F (a ⊔ b) is an isomorphism.
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2.3 Injective objects

Definition 19: Let C be a category, and J a collection of morphism of C. A J-injective object
I of C is an object with the right lifting property against J , that is for all j : c → d ∈ J , and all
morphism c → I, we have a dashed arrow:

c I

d

∀

∀j∈J
∃

If J is the class of monomorphisms of C, we simply say that I is injective. The dual construction
is called projective.

Proposition 20: Let C be an abelian category. The following are equivalent:

1. I is injective.

2. The hom functor C(−, I) : Cop → Ab is exact, that is, it preserves limits and colimits.

3. For all exact sequence 0 → c
f→ d, and for all k : c → I, there exists h : d → I such that

hf = k.

Then an object I is injective if and only if C(−, I) is exact, that is, it preserves limits and colimits.

Proof. (Proposition 20) Suppose I is injective. In general C(−, I) preserves limits, so it is left
exact. Consider in C an exact sequence 0 → a

f→ b
g→ c → 0. We want to show that:

C(c, I) → C(b, I) → C(a, I) → 0

is exact. Take any map h : a → I, then as f is mono, the lifting problem:

a I

b

h

f

admits a solution. Thus, C(b, I) → C(a, I) is surjective. The fact that C(c, I) is the kernel of
C(b, I) → C(a, I) is the direct consequence of the universal property of the kernel, and does not
rely on I being injective.

Next, suppose C(−, I) is exact, and take 0 → c
f→ d an exact sequence, and k : c → I a

morphism. Then C(d, I) → C(c, I) → 0 is exact, thus C(d, I) → C(c, I) is epi, and we can find a
preimage h : d → I to k such that hf = k. Finally, notice that this condition is also precisely
saying that I is injective, as exact sequences 0 → c → d are exactly monomorphisms c → d.

Definition 21: We say that a category C has enough injectives if every object admits a monomor-
phism into an injective object.

Proposition 22: The category Ab has enough injectives. They are given by divisible groups,
that is abelian groups G such that nG = G, for all strictly positive integer n.

Proof. (Proposition 22) This proof is adapted from https://stacks.math.columbia.edu/tag/
01D6. Take I an injective group, and suppose it is not divisible by n, that is we have some x ∈ I
such that there is no y with ny = x. Now consider the map f : Z → I sending m → mx. Then an
extension along the embedding Z ↪→ 1

nZ would be such that nf( 1n ) = f(1) = x, contradiction.
Conversely, consider A ⊆ B two abelian groups, I a divisible group, and ϕ : A → I any

morphism. We will apply Zorn’s lemma. Thus, consider the set of all morphisms ϕ′ : A′ → I such
that A ⊆ A′ ⊆ B and ϕ′ restricts to ϕ on A. Define the partial order (A′, ϕ′) ≥ (A′′, ϕ′′) if and
only if A′′ ⊆ A′, and ϕ′ restricts to ϕ′′ on A′′. If we have an ordered collection {(Ak, ϕk)}k∈K

of such pairs, then taking (∪kAk, ϕ̃) where ϕ̃(ak) = ϕk(ak) is well defined by the restrictions, is
a maximal element. Thus, Zorn’s lemma applies, and we get a maximal pair (A′, ϕ′). It suffices
then to show that in that case A′ = B. By contradiction, take x ∈ B and x /∈ A′.

Suppose first that there exists no n ∈ N such that nx ∈ A′. Then A′ ⊕ Z ≃ A′ + Zx ⊆ B, and
ϕ′ can be extended to A′ + Zx by sending x to the identity of I, which contradicts maximality of
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(A′, ϕ′). Otherwise, we take n minimal (strictly positive) such that nx ∈ A′. As I is divisible, we
have some z ∈ I such that nz = ϕ′(nx). Notice that if mx ∈ A′, then m = kn for an integer k,
otherwise [m mod n] ·x would be in A′, contradicting minimality. Thus, for the contradiction, we
extend ϕ′ to A′+Zx by sending a+mx to ϕ′(a)+mz. This definition makes sense, as if mx ∈ A′,
then ϕ(a+mx) = ϕ(a+ knx) = ϕ′(a) + kϕ′(nx) = ϕ′(a) +mz.

Now that it is established that injective objects are divisible groups, we will embed any abelian
group A into a direct product of Q/Z. We state without proving that a product of injective groups
is injective, and that Q/Z is itself injective. We create by universal property a monomorphism:

β : A →
∏

a∈A,a̸=0
Q/Z,

which on a ∈ A, a ̸= 0 is given by βa that we define as follows. First call (a) is the subgroup
generated by a, and create the map (a) → Q/Z sending a to an arbitrary non-zero element if the
order of a is infinite, and to, say, 1/n if a has order n. As Q/Z is injective, we can solve the lifting
problem:

(a) Q/Z

A

with βa, which is a monomorphism.

We now wish to prove that sheaves on a Grothendieck topos have enough injectives. We consider
the neat proof from [Joh14].

Theorem 23 (Barr’s theorem): If E is a Grothendieck topos, then there is a surjective geo-
metric morphism

F → E

where F satisfies the axiom of choice.

For a Grothendieck topos E , call Ab(E) the sheaves with values in Ab.

Lemma 24 ([Joh14, 8.12]): If f : E ′ → E is a geometric morphism, then

1. The direct image f∗ : Ab(E ′) → Ab(E) preserves injectives.

2. If f is a surjection, and Ab(E ′) has enough injective, so has Ab(E).

Proof. (Lemma 24) Suppose we have an injective object e ∈ E ′, then consider any diagram

a f∗(e)

b

with a → b mono, and we transpose:

f∗(a) e

f∗(b)

Again, f∗(a) → f∗(b) is mono, as the inverse image f∗ preserve finite limits. Therefore, we can
find a lift in E ′, and transpose again.

Next, suppose f is surjective. Take an abelian sheaf a ∈ E , and embed it with f∗(a) ↪→ e with
e injective in E ′. Then we consider:

a
ηa→ f∗f

∗(a) → f∗(e).

This time, f∗f∗(a) → f∗(e) is mono because f∗ is a right adjoint, so preserves finite limits. Then,
the unit of a geometric morphism is by definition mono whenever it is surjective.

Finally, we state the main result:
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Theorem 25: Let E be a Grothendieck topos. Then Ab(E) has enough injectives.

Proof. (Theorem 25) Using Theorem 23, it is enough to consider the case when the Grothendieck
topos satisfies the axiom of choice, but then we can exactly mimic internally the proof Proposition
22, that rely on Zorn’s lemma, that is the axiom of choice, and prove that an abelian sheaf is
divisible if and only if is is a divisible abelian group at each point. Then, we sheafify the constant
abelian presheaf Q/Z, and prove that any abelian sheaf can be embed into its direct products,
pointwise computed in a sheaf topos.

Remark 26: We can also compute more explicitly an embedding X ↪→ I into an injective abelian
sheaf. See https://stacks.math.columbia.edu/tag/01DL, which in fact rely on the same result:
we first prove that Ab has enough injectives, and we use them pointwise to prove that abelian
presheaves have enough injective. Then after a transfinite recursion, we conclude that we can
”sheafify” this result.
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3 Sheaf cohomology
As explained in the introduction, the outline of sheaf cohomology is that given an abelian sheaf
X ∈ Ab(E), we can consider an injective resolution, that is an exact sequence:

0 → X → I0 → I1 → . . . ,

where each In is an injective object. Then, given a left exact functor Γ : Ab(E) → Ab, we have
the sequence:

0 → Γ(I0) → Γ(I1) → Γ(I2) → . . .

obtained by applying Γ and composing 0 → Γ(X) → Γ(I0) (which is already exact by Proposition
18). The problem is that, Γ might lack some right-exactness, and thus the sequence might not be
exact. This default of exactness is measured precisely by the quotients:

ker(Γ(Iq) → Γ(Iq+1))
im(Γ(Iq−1) → Γ(Iq))

If Γ is the global section functor, that is Γ = E(1,−) : Ab(E) → Ab, then this quotient isHq(E , X),
the qth cohomology group of E with value in X.

3.1 Injective resolution
Let A be an abelian category.

Definition 27: A cochain complex (C•, δ) in A is for all non negative integer k, an object Ck of
A, together with maps, called differentials,

δk : Ck → Ck+1

such that δ◦δ = 0. A morphism of cochain complex f : (C•, δ) → (D•, δ′) is the data of morphisms
f : Ck → Dk in each degree commuting with the differentials. This forms the category Ch•(A).

Remark 28: It is often useful to extend a chain complex on the left by letting Ck = 0 for negative
values of k, with trivial differentials.

Definition 29: The qth cohomology group of a cochain complex (C•, δ) is the abelian object:

Hq(C•) := ker(δq)
im(δq−1)

As maps of cochain complexes commute with differentials, this define a functor Hq : Ch•(A) → A.

Definition 30: A morphism of cochain complex f : C• → D• is called a quasi-isomorphism if it
induces an isomorphism

Hq(f) : Hq(C•) ≃ Hq(D•)

on each cohomology group.

Finally, we arrive to our definition of interest.

Definition 31: Let X ∈ A. An injective resolution of X, is a cochain complex I• ∈ Ch•(A) such
that for all k, Ik is an injective object, together with a quasi-isomorphism i : X → I•, where X
is identified with the complex:

X → 0 → 0 → . . .

Remark 32: There is a model structure on Ch•(A) where cofibrations are monomorphisms (on
positive degree), fibrations are epimorphisms with injective kernels, and weak equivalences are
quasi-isomorphisms. We see that an injective complex I• is then a fibrant object, and an injective
resolution is precisely a fibrant replacement, that is, we replace a complex with another one, more
suited to do homotopy theory.

Proposition 33: An injective resolution of X is equivalently the data of an exact sequence

0 → X → I0 → I1 → . . .

11



where Ik is injective.

Proof. (Proposition 33) Suppose we have an injective resolution

X 0 0 . . .

I0 I1 I2 . . .
δ0 δ1

i0

δ2

then Hq(X) = X if k = 0, and Hq(X) = 0 for q > 1. Then, for q > 0, the induced isomorphism
means that Hq+1(I•) = 0, that is ker(δq+1) = im(δq), proving exactness at q > 0. For exactness
at I0, notice that i0 induces an isomorphism H0(X) = X ≃ ker(δ0) = H0(I•), which also prove
that i0 is injective, as it is the kernel of δ0. The converse uses the same argument backward.

Remark 34: Thus, we will write 0 → X → I• for an injective resolution of X.

Lemma 35: Suppose A has enough injectives, then any X ∈ A has an injective resolution.

Proof. (Lemma 35) For the sake of notation, call I−1 := X. We construct an exact sequence by
induction. For the base case, take any mono δ−1 = i : X ↪→ I0 into an injective object, which exists
because A has enough injectives. Then 0 → X → I0 is indeed exact. Suppose we constructed
δk : Ik → Ik+1 for 0 ≤ k < q. Then consider any mono Iq−1/ im(δq−2) ↪→ Iq into an injective
object Iq. We define the next term δq to be the induced map:

Iq−1 ↠ Iq−1/ im(δq−2) ↪→ Iq.

Then according to Lemma 11 and Lemma 13, ker(δq) = ker(Iq−1 ↠ Iq−1/ im(δq−2)) = im(δq−2),
so the sequence is exact at Iq−1, and we can continue the induction. We therefore end up with an
exact sequence:

0 → X → I0 → I1 → . . .

made of injective objects, which is, according to Proposition 33, the same thing as an injective
resolution.

3.2 Homotopy of complexes
We prove some homotopy independence result of injective resolution, that will be useful to define
sheaf cohomology.

Definition 36: Two map of complexes f, g : A• → B• are said to be homotopic if for all K ≥ 0,
there are morphisms ϕk : Ak → Bk−1 such that fk − gk = δk−1 ◦ϕk +ϕk+1 ◦ δk. We write f ≃ g.
In a diagram, we have maps:

0 A0 A1 A2 . . .

0 B0 B1 B2 . . .

ϕ2ϕ1

where the sum of the two colored triangles equals the difference of the two parallel maps between
them. We say that f is null-homotopic if it is homotopic to the zero map 0 : A• → B•. Thus, to
say that f and g are homotopic is to say that f − g is null-homotopic. Two complexes A•, B• are
homotopic whenever there are two maps f : A• → B• and g : B• → A• such that g ◦ f ≃ idA•

and f ◦ g ≃ idB• .

Lemma 37: If two maps of complex are homotopic, then they induce the same cohomology maps.

Proof. (Lemma 37) Suppose f : A• → B• is null homotopic, and take any x ∈ Hq(A•), so by
definition δq+1(x) = 0. Then f(x) = δq−1ϕ(x) + ϕδq+1(x) = δq−1ϕ(x) ∈ im(δq−1) thus is zero in
Hq(B•). Hence, f is the zero map. Now, if f and g are homotopic, then f − g is the zero map on
the cohomology groups, thus f and g are the same map in cohomology.

Corollary 38: If two complexes are homotopic, they have the same cohomology.
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Proof. (Corollary 38) Suppose f : A• → B• and g : B• → A• is a homotopy of complex. Then
by 37, the maps H•(f) and H•(g) compose to the identity H•(id) both ways, which proves the
isomorphism of cohomology.

The goal is to prove that two injective resolutions are homotopic.

Theorem 39: Let 0 → X → I• and 0 → X → J• be two injective resolutions of X, then I• and
J• are homotopic.

3.3 Cohomology
Finally, we define sheaf cohomology inside a general Grothendieck topos, and show that it is
independent of the injective resolution we chose. This last point in fact corresponds to the fact
that the cohomology is really computed in the homotopy category of cochain complexes, and thus
is independent of the choice of fibrant replacement, see Remark 32, but these considerations are
out of scope of this note. Here, it will simply follow from the homotopic considerations of the
previous section.

We fix a Grothendieck topos E , and even though the result can be obtained more general with
an abelian category A with enough injectives, we stick to A = Ab, and consider the category of
abelian sheaves Ab(E). We use the definition from [Joh14].

Definition 40: Let X ∈ Ab(E). We call ΓX the functor E(X,−) : Ab(E) → Ab. If X ∈ E , we
may also consider ΓX by composing with the free abelian group functor.

Lemma 41: The functor ΓX has a left adjoint, so is left-exact.

Proof. (Lemma 41) Call a ⊣ i the (enriched) adjoint pair sheafification-forgetful. The proof is
inspired from this post. We recall without proof that we have a tensor product of abelian groups
A⊗B such that

A⊗− ⊣ Ab(A,−),
and that this passes to abelian presheaves, that is, for a category C, a natural isomorphism

Ab(Ĉ)(A⊗X,Y ) ≃ Ab(A,Ab(Ĉ)(X,Y )),

where A⊗X is computed pointwise.
Call C a site of E . Let A be an abelian group, and X ∈ Ab(E), we define the sheaf A ·X by:

(A ·X)(c) = a(A⊗ iF (c)).

We show that the tensoring functor ∆X : Ab → Ab(E) sending A to A · X is the desired left
adjoint. We have the natural isomorphisms:

Ab(E)(A ·X,Y ) ≃ Ab(E)(a(A⊗ iF ), Y )
≃ Ab(Ĉ)(A⊗ iX, iY )
≃ Ab(A,Ab(Ĉ)(iX, iY ))
≃ Ab(A,Ab(E)(aiX, Y ))
≃ Ab(A,Ab(E)(X,Y )).

Construction 42: Let U ∈ E . Let F ∈ Ab(E). The qth cohomology group of the space U with
value in F is the qth cohomology group of the cochain complex ΓU (I•) for any injective resolution
of F . More explicitly, if 0 → U → I• is an injective resolution, then define the qth cohomology
group to be:

Hq(U,F ) := ker(ΓU (Iq) → ΓU (Iq+1))
im(ΓU (Iq−1) → ΓU (Iq))

,

with convention that I−1 = 0.

Proof. (Construction 42) For this to be well defined, we need to show that it does not depend
on the injective resolution we chose. We know by Theorem 39 that any two injectives resolutions
of X are homotopic, and so is there image trough Γ (which is an additive functor), thus according
to Corollary 38, they have isomorphic cohomology groups.
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Remark 43: If E is a category of sheaves on a topological space X, then X as a sheaf is the
terminal object, thus ΓX is indeed the global section functor, and we recover the usual definition
of cohomology.
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