Diagrammatic (∞, n) -categories

Clémence Chanavat¹

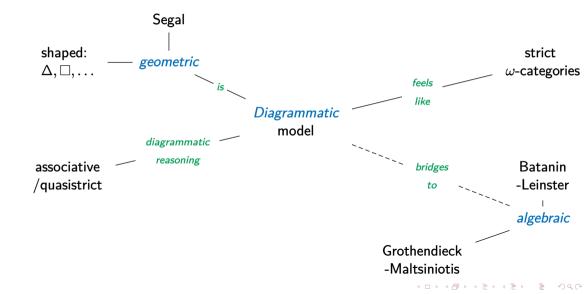
Tallinn University of Technology

December 16, 2024

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

¹j.w.w. Amar Hadzihasanovic

Landscape of models



Towards a self-contained model

- No extra data beyond cells, faces & degeneracies maps;
- Duals, suspensions, Gray products, joins, all defined representably;

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

- Diagrammatic arguments just work (or can be tweaked);
- *Explicit* cellular model of the walking equivalence;

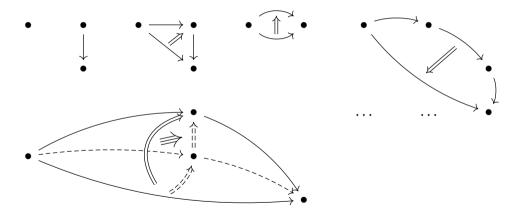
Diagrammatic (∞, n) -categories are based on *diagrammatic sets*.

イロト イポト イモト イモト モニ のくぐ

Definition 1: A *diagrammatic set* X is a presheaf over \odot .

The base category \odot [Had24]

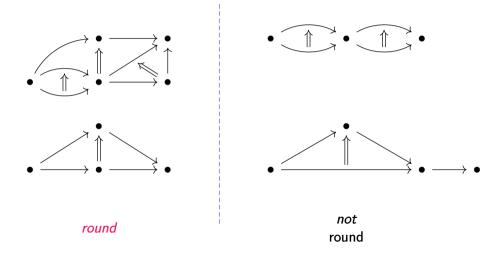
An inductively generated family of *regular directed cell complexes* with a maximal element:



... which are stable under duals, Gray products, joins, suspensions.

Paste atoms together...

...and obtain *molecules*:



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

Definition 2: A pasting diagram $u: U \to X$ is *round* if U is a round molecule.

Definition 3: An *n*-round diagram is an *equivalence* if it is invertible up to (n+1)-round diagrams, which are also equivalences.

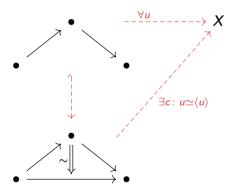
<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

If there exists an equivalence $e: x \Rightarrow y$, we write $x \simeq y$.

Theorem 1:

- 1. The relation \simeq is
 - a) an equivalence relation;
 - b) a congruence with respect to $-\#_{n-1}-;$
- 2. All degenerate diagrams are equivalences.

Definition 4: A diagrammatic (∞, ∞) -category is a diagrammatic set X such that every round pasting diagram $u: U \to X$ is equivalent to some parallel cell $\langle u \rangle$, called a weak composite.



- 1. The model is *natively* (∞, ∞) *-categorical*.
- 2. If all cells of dimension > *n* are equivalences \rightsquigarrow *diagrammatic* (∞ , *n*)-*categories*.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Definition 5: A *functor* of (∞, n) -categories is a natural transformation of the underlying diagrammatic sets.

Definition 6: A functor $f: X \to Y$ is an ω -equivalence if

- f is essentially surjective on 0-cells;
- for all parallel $u, v \in X$, the induced function

$$f_{u,v}: X(u,v) \to Y(fu,fv)$$

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

is essentially surjective.

Theorem 2 (C., Hadzihasanovic): For any $n \in \mathbb{N} \cup \{\infty\}$, there exists a model structure on diagrammatic sets where:

- 1. fibrant objects are exactly the (∞, n) -categories;
- 2. weak equivalences between (∞, n) -categories are exactly the ω -equivalences.

Theorem 3 (C., Hadzihasanovic): The model structure for $(\infty, 0)$ -categories is Quillen equivalent to the classical model structure on simplicial sets.

A 回 > 4 □ > 4

- 1. Comparison with other models for n > 0;
- 2. Semistrictification via fibrant replacement;
- 3. Underlying diagrammatic $(\infty, 1)$ -category of a model category.

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

References I

- C. Chanavat and A. Hadzihasanovic, *Equivalences in diagrammatic sets*, September 2024, arxiv:2410.00123.
- Model structures for diagrammatic (∞, n) -categories, October 2024, arxiv:2410.19053.
- Diagrammatic sets as a model of homotopy types, Homology, Homotopy and Applications (to appear).
- A. Hadzihasanovic, *Combinatorics of higher-categorical diagrams*, April 2024, arXiv:2404.07273.

Thanks!

