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Towards a self-contained model

• No extra data beyond cells, faces & degeneracies maps;
• Duals, suspensions, Gray products, joins, all defined representably;
• Diagrammatic arguments just work (or can be tweaked);
• Explicit cellular model of the walking equivalence;



The diagrammatic model

Diagrammatic (∞, n)-categories are based on diagrammatic sets.

Definition 1: A diagrammatic set X is a presheaf over ⊙.



The base category ⊙ [Had24]
An inductively generated family of regular directed cell complexes with a maximal
element:
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. . . which are stable under duals, Gray products, joins, suspensions.



Paste atoms together. . .
. . . and obtain molecules:
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Definition 2: A pasting diagram u : U → X is round if U is a round molecule.



Equivalences [CH24a]

Definition 3: An n-round diagram is an equivalence if it is invertible up to (n+1)-round
diagrams, which are also equivalences.
If there exists an equivalence e : x ⇒ y , we write x ≃ y .

Theorem 1:
1. The relation ≃ is

a) an equivalence relation;
b) a congruence with respect to −#n−1−;

2. All degenerate diagrams are equivalences.



Definition 4: A diagrammatic (∞,∞)-category is a diagrammatic set X such that
every round pasting diagram u : U → X is equivalent to some parallel cell ⟨u⟩, called a
weak composite.
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•

• •

∀u

∃c : u≃⟨u⟩

∼

1. The model is natively (∞,∞)-categorical.
2. If all cells of dimension > n are equivalences ⇝ diagrammatic (∞, n)-categories.



Definition 5: A functor of (∞, n)-categories is a natural transformation of the under-
lying diagrammatic sets.

Definition 6: A functor f : X → Y is an ω-equivalence if
• f is essentially surjective on 0-cells;
• for all parallel u, v ∈ X , the induced function

fu,v : X (u, v) → Y (fu, fv)

is essentially surjective.



Main results of [CH24b]

Theorem 2 (C., Hadzihasanovic): For any n ∈ N∪ {∞}, there exists a model struc-
ture on diagrammatic sets where:
1. fibrant objects are exactly the (∞, n)-categories;
2. weak equivalences between (∞, n)-categories are exactly the ω-equivalences.

Theorem 3 (C., Hadzihasanovic): The model structure for (∞, 0)-categories is
Quillen equivalent to the classical model structure on simplicial sets.



Further work

1. Comparison with other models for n > 0;
2. Semistrictification via fibrant replacement;
3. Underlying diagrammatic (∞, 1)-category of a model category.
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