What is a diagrammatic (∞, ∞) -category?

Clémence Chanavat¹

November 28, 2024

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

¹j.w.w. Amar Hadzihasanovic

Idea

Diagrammatic setsare to (∞,∞) -categorieswhatreflexive graphsare tocategories.

Corollary

To go fromreflexive graphstocategoriesisto go fromdiagrammatic setsto (∞, ∞) -categories...

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

... if we replace all equalities by *some notion of equivalence*.

Contents I

From reflexive graphs to categories.

The base category of diagrammatic sets

イロト イ戸ト イミト イミト ヨー のくぐ

What is an (∞, ∞) -category?

Theory of (∞, ∞) -categories

From reflexive graphs to categories.

A *reflexive graph* is a graph (edges and vertices), together with, for each vertex v, a designated unit-edge $1_v: v \to v$.

Definition 1.1: A *category* is a reflexive graph together with a *composition operation* which is *associative* and *unital*.

A composition operation transforms any pasting of 1-cells into a single 1-cell.
1.1 1-cell is a nickname for edge;
1.2 A pasting of 1-cells is a list of 1-cells with compatible boundaries;
1.2.1 The boundaries of a 1-cell are the nickname for its source and target.
A composition operation is unital if it appropriately respects the unit;

3. A composition operation is *associative* if...

To go from reflexive graphs to categories, we will

 $\begin{array}{rrrr} \text{Reflexive graph} & \to & \text{boundaries} & \to & \text{pasting} & \to & \text{composition operation.} \\ & \to & & \text{units} \\ & \to & \text{associativity.} \end{array}$

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Reflexive graphs

Definition 1.2: The *base category of reflexive graphs*, written \odot_1 , has 2 objects and 3 non-identity arrows

such that $\sigma \circ \partial^{\alpha} = id_1$, for both $\alpha = \pm$.

Definition 1.3: A *reflexive graph* is a presheaf on \bigcirc_1 . With natural transformations as maps, this forms the category \bigcirc_1 **Set**.

Picturing a reflexive graph

Let $G \colon {\odot^{\text{op}}_1} \to \textbf{Set}$ be a reflexive graph. We call

$$G(\mathbf{1})$$
 the set of *0-cells* of *G*
and $G(\vec{I})$ the set of *1-cells* of *G*

Yoneda:

a 0-cell
$$x \in G(\mathbf{1})$$
 is the same as a map $x : \mathbf{1} \to G$
a 1-cell $f \in G(\vec{l})$ is the same as a map $f : \vec{l} \to G$.

If $x: \mathbf{1} \to G$ we draw x

$$\text{If} \quad f: \vec{I} \to G \qquad \text{we draw} \qquad x \stackrel{f}{\to} y \qquad \text{where} \qquad \begin{cases} x = G(\partial^-)f, \\ y = G(\partial^+)f. \end{cases}$$

・ロト・日本・日本・日本・日本

Boundaries of 1-cells

Definition 1.4: Let $G: \bigoplus_{1}^{\text{op}} \to \text{Set}$ be a reflexive graph, and $f: \vec{l} \to X$ be a 1-cell. The *input 0-boundary* of f, written $\partial_0^- f$, is the composite

$$\mathbf{1} \stackrel{\partial^-}{\longrightarrow} \vec{I} \stackrel{f}{\longrightarrow} G.$$

The *output 0-boundary* of f, written $\partial_0^+ f$, is the composite

$$\mathbf{1} \stackrel{\partial^+}{\longrightarrow} \vec{I} \stackrel{f}{\longrightarrow} G.$$

By Yoneda again, can picture f by:

$$\partial^{-}f \xrightarrow{f} \partial^{+}f$$

Pasting of 1-cells

1 can be pictured as \bullet ; *\vec{l}* can be pictured as $\bullet \rightarrow \bullet$.

Define $\vec{l}_{\#0}\vec{l}$ as the following pushout in \bigcirc_1 **Set**:

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

which *can be pictured* as $\bullet \to \bullet \to \bullet$.

Pasting of 1-cells, cont.

The sentence

Let
$$f: \vec{l} \to G$$
 and $g: \vec{l} \to G$ be two 1-cells such that $\partial_0^+ f = \partial_0^- g$.

translates by saying that the diagram

commutes. We call $f \#_0 g : \vec{l} \#_0 \vec{l} \to G$ the *pasting* of *f* and *g*, which can be pictured as $x \stackrel{f}{\to} y \stackrel{g}{\to} z$.

Pasting of 1-cells, cont.

More generally, a chain $x \xrightarrow{f_0} y_1 \xrightarrow{f_1} y_2 \xrightarrow{f_1} y_2 \xrightarrow{f_n} z$ of 1-cells defines a map

$$f_0 \#_0 f_1 \dots \#_0 f_n \colon I \#_0 I \#_0 \dots \#_0 I \to X,$$

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

which we also call a pasting of 1-cells.

Composition operation

Let $G: \odot_1^{\text{op}} \to \mathbf{Set}$ be a reflexive graph.

Definition 1.5: A composition operation of G is a function $\langle - \rangle$ that maps any pasting $f_0 \#_0 f_1 \dots \#_0 f_n$ of 1-cells to a single 1-cell $\langle f_0 \#_0 f_1 \dots \#_0 f_n \rangle$.

In picture,

Units

Let $x \colon \mathbf{1} \to G$ be a 0-cell. Then we do

$$\vec{l} \xrightarrow{\sigma} \mathbf{1} \xrightarrow{x} G$$

to obtain $1_x: \vec{l} \to G$, the *unit* on *x*. Picture:

Definition 1.6: A composition law $\langle - \rangle$ is *unital* if for all 1-cells $f : x \to y$,

$$\langle 1_x \#_0 f \rangle = f, \qquad f = \langle f \#_0 1_y \rangle.$$

- ロット・日・・日・・日・・日・

Associativity

Definition 1.7: A composite law is *associative* if for all $w \xrightarrow{f} x \xrightarrow{g} y \xrightarrow{h} z$,

してい 「山」 へば アスポント 白

Summary

In a *reflexive graph*, there are *boundaries* we can do *pastings* and *take units*. A *composition law* gives the structure of *category* provided it satisfies two axioms. The base category of diagrammatic sets

・ロト ・日 ・ モー ・ モー・ 「日・ ・ のへで」

Plan

An object of \odot will be called an *atom*.

・ロト ・日・・日・・日・・ つくの

In fact...

By induction we will construct *the molecules*, a subset of which are the atoms. For the induction to go through, we need that a molecule U comes equipped with:

- 1. an *input k-boundary* $\partial_k^- U$, (which is also a molecule);
- 2. an *output k-boundary* $\partial_k^+ U$, (which is also a molecule);
- 3. a property "to be round", which can be true or false.

Example: let U be the following molecule:

What is $\partial_1^- U$? what is $\partial_0^+ U$? Is *U* round?

The induction

There are three constructors:

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の へ ()・

- 1. (Point);
- 2. *(Paste)*;
- 3. *(Rewrite)*;

The point is a molecule.

Point: picture

・ロト ・ 四ト ・ 三ト ・ 三 ・ うへぐ

.

Pasting

Given two molecules U, V and $k \ge 0$ such that $\partial_k^+ U = \partial_k^- V$, define the new molecule $U_{\#_k}V$ as the pushout:

Pasting: picture

◆□ > ◆□ > ◆三 > ◆三 > ・三 = ・ ○へ⊙

Rewrite

Given two round molecules U, V of the same dimension such that $\partial U = \partial V$, define $\partial(U \Rightarrow V)$ as the pushout:

Then define the new molecule $U \Rightarrow V$ by adding a maximal element to $\partial(U \Rightarrow V)$ (plus the correct orientation).

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Rewrite: picture

▲ロト ▲園 ト ▲目 ト ▲目 ト → 目 → ⊙ へ ⊙

Rewrite: adding the top element

Little summary

Definition 2.1: A *atom* is a molecule with a top-most element, i.e. it is either:

1. the (Point);

2. a (Rewrite) of U and V, written $U \Rightarrow V$.

Two kinds of maps: the inclusions...

Inclusions take "sub molecules":

Remark 2.1:

elements $x \in U$ $\stackrel{bijection}{\longleftrightarrow}$ inclusions $\iota \colon A \hookrightarrow U$, A atom using $x \mapsto cl(x)$.

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ・ つへぐ

Two kinds of maps: ... and the collapses

Collapses "open" part of a molecule:

We call \odot (a skeleton) of the category of atoms and those maps.

Theorem 2.1 (C., Hadzihasanovic): The category \odot with those maps is an *Eilenberg–Zilber* category.

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

In particular:

- 1. unique collapse-inclusion factorisation,
- 2. no non-identity automorphism,
- 3. each collapse has a section, and is entirely determined by them!

Definition 2.2: A *diagrammatic set* is a presheaf on \odot . A *map* of diagrammatic sets is a natural transformation.

Proposition 2.1: The Yoneda embedding $\odot \hookrightarrow \odot$ **Set** factors through:

 $\odot \longleftrightarrow \textit{molecules} \longleftrightarrow \textit{RDCpx} \longleftrightarrow \odot \textit{Set}$

イロト イ戸ト イミト イミト ヨー のくぐ

What is an (∞, ∞) -category?

<ロト < 2 × 4 =

The construction

To go from reflexive graphs to categories, we did

 $\begin{array}{rrrr} \mbox{Reflexive graphs} & \to & \mbox{boundaries} & \to & \mbox{pasting} & \to & \mbox{composition operation.} \\ & \to & \mbox{units.} \\ & \to & \mbox{associativity.} \end{array}$

So to go from diagrammatic sets to (∞, ∞) -categories, we will:

And in the middle, we will introduce the equivalences, to replace the equalities.

Passage to diagrammatic sets

Let $X: \odot^{\mathrm{op}} \to \mathbf{Set}$ be a diagrammatic set. We call

. . .

. . .

Yoneda:

a 0-cell
$$x \in X(1)$$
 is the same as a map $x : 1 \to X$
a 1-cell $f \in X(\vec{l})$ is the same as a map $f : \vec{l} \to X$
...
a *n*-cell $u \in X(U)$ is the same as a map $u : U \to X$

・ロト・(型ト・(ヨト・(型ト・(ロト)

Boudaries

If $u: U \to X$ is a diagram, the composite

$$\partial_k^{\alpha} U \longrightarrow U \stackrel{u}{\longrightarrow} X$$

defines $\partial_k^{\alpha} u$, the *input/output k-boundary* of u. Picture

We write $u: v^- \Rightarrow v^+$ to mean $\partial^{\alpha} u = v^{\alpha}$.

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト ▲ 回 ト

Pasting

We can similarly paste diagrams together. If $u: U \to X$ and $v: V \to X$ such that $\partial_k^+ u = \partial_k^- v$, then

Definition 3.1:

If U is an n-dimatoma map $u: U \to X$ is ann-cellIf U is an n-dimround moleculea map $u: U \to X$ is ann-round diagramIf U is an n-dimmoleculea map $u: U \to X$ is ann-diagram.

Pasting: picture

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ● ◆○へ⊙

Unit(or)s

For any diagram $u: U \to X$, and a collapse $p: V \twoheadrightarrow U$, we can take a unit on u by:

$$V \stackrel{p}{\longrightarrow} U \stackrel{u}{\longrightarrow} X$$

Example:

 $\begin{array}{c} x \\ \downarrow u \\ y \end{array}$ $\mu: \vec{l} \to X$ lf is **p**: **U** →→ **i** (\Rightarrow) ------> and is then $u \circ p \colon U \to X$ is $\begin{array}{c} X \\ u \left(\Longrightarrow \\ 1_{u} \right) u \end{array}$

Unitors: other example

If $u: \vec{l} \to X$ is

and $p: U \rightarrow \vec{l}$ is

then $u \circ p \colon U \to X$ is

シックの 正 エルチャルボチュージャー

 $x \downarrow u$

v

What is an equivalence?

We want to compare two *n*-cells $x, y \colon U \to X$, but asking "is x = y?" is too strong. *Idea:* replace = $by \simeq$, a looser equivalence relation.

If x = y, it is necessary that $\partial x = \partial y$ i.e. x and y are parallelFor $x \simeq y$, a prerequisite is $\partial x = \partial y$ i.e. x and y have to be parallel

In picture, we want to fill:

Definition 3.2: Let $x, y: U \to X$ be two parallel *n*-cells. We say that $x \simeq y$ if there exists an (n + 1)-cell $h: x \Rightarrow y$, which is an *equivalence*.

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

What is an equivalence, in a bicategory?

Definition 3.3: Let \mathscr{C} be a bicategory. We say that a 1-cell $f : x \to y$ is an *equivalence* if:

1. there exists a 1-cell $f': y \to x$, and two 2-cells $h: f *_0 f' \Rightarrow 1_x$ and $z: f' *_0 f \Rightarrow 1_y$:

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

2. *h* and *z* are *isomorphisms*.

Notice: an *isomorphism* is nothing more but an an equivalence witnessed by an *equality*.

Equivalences in diagrammatic sets

Definition 3.4: Let X be a diagrammatic set. We say that a *n*-cell $u: x \Rightarrow y$ is an *equivalence* if:

1. there exists a *n*-cell $u': y \Rightarrow x$, and two (n + 1)-cells $h: u \#_{n-1}u' \Rightarrow 1_x$ and $z: u' \#_{n-1}u \Rightarrow 1_y$:

2. *h* and *z* are *equivalences*.

Little caveat: for this definition to work well, one should replace "cell" by "round diagram". In an (∞, ∞) -category, this makes no difference.

Recall: $x \simeq y$ means that there exists an equivalence from x to y.

Theorem 3.1 (C., Hadzihasanovic):

- The relation \simeq is an equivalence relation;
- The pasting of equivalences is again an equivalence;
- If $x \simeq y$, and x is an equivalence, then y is an equivalence.

See [CH24b].

A new flavor of composition:

Composition in reflexive graphs:

Composition in diagrammatic sets:

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

where c is an *equivalence*.

Higher composition shape

By generalisation, for all *round* molecules U, we define the atom $\langle U \rangle := \partial^- U \Rightarrow \partial^+ U$, in picture:

・ロト ・日・・日・・日・・ つくの

Weak composites

Definition 3.5: Let X be a diagrammatic set, $u: U \to X$ be a round diagram. A *weak composite* for *u* is:

- 1. a cell $\langle u \rangle : \langle U \rangle \rightarrow X$ parallel to u,
- 2. such that $u \simeq \langle u \rangle$.

In that case, we say that *u* has a weak composite.

A weak composite for the 1-round diagram $w \xrightarrow{f} x \xrightarrow{g} v \xrightarrow{h} z$ is

1. a 1-cell
$$\langle f_{\#_0}g_{\#_0}h\rangle$$
: $w \Rightarrow z$,

Other example

▲ロト ▲園 ト ▲目 ト ▲目 ト → 目 → ⊙ へ ⊙

$(\infty,\infty)\text{-category:}$ definition

Definition 3.6 (Hadzihasanovic): A diagrammatic set X is an (∞, ∞) -category if all round diagrams have a weak composite.

By extension, an (∞, n) -category is an (∞, ∞) -category such that all cells of dimension > n are equivalences.

What about unitality, associativity, exchange?

At first glance, an (∞, ∞) -category is "just" a composition operation.

Unitality

Let $u: x \to y$ be a 1-cell, we constructed the 2-cell

Theorem 3.2 (C., Hadzihasanovic):

- 1. The cell ρ_u is an equivalence, i.e $u \#_0 1_y \simeq u$.
- 2. In fact, all degenerate cells are equivalences.

Meaning: all diagrammatic sets (hence all (∞, ∞) -categories) are already "unital". Each surjection $p: U \rightarrow V$ gives a "unit law" for diagrammatic sets.

Composition is unital

Let $u: x \Rightarrow y$ be an *n*-cell, and $\langle u \#_{n-1} 1_y \rangle$ be a weak composite witnessed by *c*. Proof.

Then $\langle u \#_{n-1} 1_y \rangle \stackrel{\text{by } c}{\simeq} u \#_{n-1} 1_y \stackrel{\text{by unitor}}{\simeq} u$. Since \simeq is transitive, $\langle u \#_{n-1} 1_y \rangle \simeq u$. Picture proof.

For c' any weak inverse of c, we form the pasting of equivalences:

Associativity

Consider the pasting of three 1-cells $w \xrightarrow{f} x \xrightarrow{g} y \xrightarrow{h} z$ in an (∞, ∞) -category X. *Recall* the following picture for reflexive graphs:

ロト (日下 (日下 (日下)) 日 (の)

Associativity, cont.

Associativity, cont.

Theorem 3.3: There exists equivalences α and ξ filling the diagram:

Theorem 3.4 (C., Hadzihasanovic): More generally, in a diagrammatic set, every appropriate horn admits such a filler.

Remark: this is the main result of [CH24b].

In a *reflexive graph*, there are *boundaries* we can do *pastings* and *take units*. A *composition law* gives the structure of *category* provided it satisfies two axioms.

In a *diagrammatic set*, there are *boundaries* we can do *pastings* and *take units*. A *composition law* gives the structure of (∞, ∞) -*category* provided *nothing*.

Theory of (∞, ∞) -categories

<ロト < 2 × 4 =

Functor

Definition 4.1: A *functor* $f: X \to Y$ between two (∞, ∞) -categories is a natural transformation of diagrammatic sets.

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

Remark 4.1: Functors preserves:

- 1. shapes of diagrams, i.e. $(u: U \to X) \mapsto (f(x): U \to Y);$
- 2. boundaries and unit(or)s, (by naturality);
- 3. hence equivalences;
- 4. hence weak composites.

Equivalence of (∞, ∞) -categories

Let $f: X \to Y$ be a functor. We say that f is an ω -equivalence if:

 $\forall (u, v) \colon \partial U \to X \qquad \qquad \forall y \colon f(u) \Rightarrow f(v)$

such that $y \simeq f(w)$. *i.e.* f is *essentially surjective* at all dimension. *Notice*, we can prove that if $f(x) \simeq f(y)$ then $x \simeq y$, i.e. f is *essentially injective*.

Theorems

We can finally state the main results of [CH24a, CH24c].

Theorem 4.1 (C., Hadzihasanovic): For any $n \in \mathbb{N} \cup \{\infty\}$, there exists a model structure on diagrammatic sets where:

- 1. fibrant objects are exactly the (∞, n) -categories;
- 2. weak equivalences between (∞, n) -categories are exactly the ω -equivalences.

Theorem 4.2 (C., Hadzihasanovic): The model structure for $(\infty, 0)$ -categories is Quillen equivalent to the classical model structure on simplicial sets.

Our theory of $(\infty, 0)$ -categories coincides with the classical theory of ∞ -groupoids!

Further directions

Does our notion of (∞, n)-categories coincides with the "classical" notions of (∞, n)-categories?

イロト イ戸ト イミト イミト ヨー のくぐ

• Semistrictification: composition go back to being an operation.

- C. Chanavat and A. Hadzihasanovic, *Diagrammatic sets as a model of homotopy types*, July 2024, arxiv:2407.06285.
- Equivalences in diagrammatic sets, September 2024, arxiv:2410.00123.
- **.** _____, *Model structures for diagrammatic* (∞, n) -*categories*, October 2024, arxiv:2410.19053.

Thanks!

