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Idea

Diagrammatic sets are to (∞,∞)-categories
what reflexive graphs are to categories.



Corollary

To go from reflexive graphs to categories is
to go from diagrammatic sets to (∞,∞)-categories. . .

. . . if we replace all equalities by some notion of equivalence.
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From reflexive graphs to categories.



Recall

A reflexive graph is a graph (edges and vertices), together with, for each vertex v , a
designated unit-edge 1v : v → v .



Facts

Definition 1.1: A category is a reflexive graph together with a composition operation
which is associative and unital.

1. A composition operation transforms any pasting of 1-cells into a single 1-cell.
1.1 1-cell is a nickname for edge;
1.2 A pasting of 1-cells is a list of 1-cells with compatible boundaries;

1.2.1 The boundaries of a 1-cell are the nickname for its source and target.

2. A composition operation is unital if it appropriately respects the unit;
3. A composition operation is associative if. . .



The construction

To go from reflexive graphs to categories, we will

Reflexive graph → boundaries → pasting → composition operation.
→ units
→ associativity.



Reflexive graphs

Definition 1.2: The base category of reflexive graphs, written ⊙1, has 2 objects and 3
non-identity arrows

1 I⃗

∂−

∂+

σ

such that σ ◦ ∂α = id1, for both α = ±.

Definition 1.3: A reflexive graph is a presheaf on ⊙1. With natural transformations as
maps, this forms the category ⊙1Set.



Picturing a reflexive graph
Let G : ⊙op

1 → Set be a reflexive graph. We call

G(1) the set of 0-cells of G
and G (⃗I) the set of 1-cells of G

Yoneda:

a 0-cell x ∈ G(1) is the same as a map x : 1 → G
a 1-cell f ∈ G (⃗I) is the same as a map f : I⃗ → G .

If x : 1 → G we draw x

If f : I⃗ → G we draw x y where
{
x = G(∂−)f ,
y = G(∂+)f .

f



Boundaries of 1-cells

Definition 1.4: Let G : ⊙op
1 → Set be a reflexive graph, and f : I⃗ → X be a 1-cell.

The input 0-boundary of f , written ∂−
0 f , is the composite

1 I⃗ G .∂− f

The output 0-boundary of f , written ∂+
0 f , is the composite

1 I⃗ G .∂+ f

By Yoneda again, can picture f by:

∂−f ∂+ff



Pasting of 1-cells

1 can be pictured as •;
I⃗ can be pictured as • → •.

Define I⃗#0⃗I as the following pushout in ⊙1Set:

1 I⃗

I⃗ I⃗#0⃗I

∂−

∂+

⌟

which can be pictured as • → • → •.



Pasting of 1-cells, cont.

The sentence

Let f : I⃗ → G and g : I⃗ → G be two 1-cells such that ∂+
0 f = ∂−

0 g .

translates by saying that the diagram

1 I⃗

I⃗

X

∂−

∂+

g

f

commutes.
We call f #0g : I⃗#0⃗I → G the pasting of f and g , which can be pictured as x f→ y g→ z .



Pasting of 1-cells, cont.

More generally, a chain x y1 y2 yn zf0 f1 fn of 1-cells defines a
map

f0#0f1 . . .#0fn : I⃗#0⃗I#0 . . .#0⃗I → X ,

which we also call a pasting of 1-cells.



Composition operation

Let G : ⊙op
1 → Set be a reflexive graph.

Definition 1.5: A composition operation of G is a function ⟨−⟩ that maps
any pasting f0#0f1 . . .#0fn of 1-cells

to a single 1-cell ⟨f0#0f1 . . .#0fn⟩.

In picture,

∀n, ∀(fi)1,...n x y1 y2 yn z

x z

f0 f1 fn

⟨f0#0f1#0...#0fn⟩

⟨−⟩



Units
Let x : 1 → G be a 0-cell. Then we do

I⃗ 1 Gσ x

to obtain 1x : I⃗ → G , the unit on x . Picture:

x x 1x := x ◦ σ : I⃗ → X

x x : 1 → X

1x

Definition 1.6: A composition law ⟨−⟩ is unital if for all 1-cells f : x → y ,

⟨1x#0f ⟩ = f , f = ⟨f #01y ⟩.



Associativity

Definition 1.7: A composite law is associative if for all w x y z ,f g h

w x y z w x y z

w y z w x z

w z w z

f g h f g h

⟨f#0g⟩ h

⟨−⟩

f ⟨g#0h⟩
⟨−⟩

⟨⟨f#0g⟩#0h⟩ ⟨f#0⟨g#0h⟩⟩

⟨−⟩ ⟨−⟩



Summary

In a reflexive graph, there are boundaries we can do pastings and take units.
A composition law gives the structure of category provided it satisfies two axioms.



The base category of diagrammatic sets



Plan

the base category of reflexive graphs is ⊙1.
the base category of diagrammatic sets is ?

We extend ⊙1 to ⊙ by induction.

• • • • • •

• • • . . . . . .

• • • • . . .

An object of ⊙ will be called an atom.



In fact. . .

By induction we will construct the molecules, a subset of which are the atoms.
For the induction to go through, we need that a molecule U comes equipped with:
1. an input k-boundary ∂−

k U, (which is also a molecule);
2. an output k-boundary ∂+

k U, (which is also a molecule);
3. a property “to be round”, which can be true or false.

Example: let U be the following molecule:

• • •

What is ∂−
1 U? what is ∂+

0 U?
Is U round?



The induction

There are three constructors:
1. (Point);
2. (Paste);
3. (Rewrite);



Point

The point is a molecule.



Point: picture

•



Pasting

Given two molecules U,V and k ≥ 0 such that ∂+
k U = ∂−

k V , define the new molecule
U#kV as the pushout:

∂+
k U = ∂−

k V V

U U#kV

⌟



Pasting: picture

•

∂+
1 U = ∂−

1 V • • • • • • V

•

U • • • • • • U#1V

⌟



Rewrite

Given two round molecules U,V of the same dimension such that ∂U = ∂V , define
∂(U ⇒ V ) as the pushout:

∂U = ∂V V

U ∂(U ⇒ V )

⌟

Then define the new molecule U ⇒ V by adding a maximal element to ∂(U ⇒ V )
(plus the correct orientation).



Rewrite: picture
• •

• • •

• •

• •

• • •

• •

⌟



Rewrite: adding the top element
• •

• • •

• •

• •

• • •

• •



Little summary
Definition 2.1: A atom is a molecule with a top-most element, i.e. it is either:
1. the (Point);
2. a (Rewrite) of U and V , written U ⇒ V .

•

• • atom

•

• • • • molecule

• • regular directed complex

•



Two kinds of maps: the inclusions. . .

Inclusions take “sub molecules”:

• •

• • • • •ι

Remark 2.1:

elements x ∈ U bijection
↭ inclusions ι : A ↪→ U, A atom

using x 7→ cl(x).



Two kinds of maps: . . . and the collapses

Collapses “open” part of a molecule:

•

• • • •p



Eilenberg–Zilber category

We call ⊙ (a skeleton) of the category of atoms and those maps.

Theorem 2.1 (C., Hadzihasanovic): The category ⊙ with those maps is an
Eilenberg–Zilber category.

In particular:
1. unique collapse-inclusion factorisation,
2. no non-identity automorphism,
3. each collapse has a section, and is entirely determined by them!



Diagrammatic sets

Definition 2.2: A diagrammatic set is a presheaf on ⊙. A map of diagrammatic sets
is a natural transformation.

Proposition 2.1: The Yoneda embedding ⊙ ↪→ ⊙Set factors through:

⊙ molecules RDCpx ⊙Set



What is an (∞,∞)-category?



The construction

To go from reflexive graphs to categories, we did

Reflexive graphs → boundaries → pasting → composition operation.
→ units.
→ associativity.

So to go from diagrammatic sets to (∞,∞)-categories, we will:

Diagrammatic sets → boundaries → pasting → composition operation.
→ units.
→ associativity.

And in the middle, we will introduce the equivalences, to replace the equalities.



Passage to diagrammatic sets
Let X : ⊙op → Set be a diagrammatic set. We call

X (1) the set of 0-cells of X
X (⃗I) the set of 1-cells of X

. . . . . .⋃
U atom

dimU=n

X (U) the set of n-cells of X

. . . . . .

Yoneda:

a 0-cell x ∈ X (1) is the same as a map x : 1 → X
a 1-cell f ∈ X (⃗I) is the same as a map f : I⃗ → X

. . . . . .
a n-cell u ∈ X (U) is the same as a map u : U → X

. . . . . .



Boudaries
If u : U → X is a diagram, the composite

∂α
k U U Xu

defines ∂α
k u, the input/output k-boundary of u. Picture

y

If u : U → X is x z

y

then ∂−
1 u : ∂

−
1 U → X is x z

gf

h

gf

u

We write u : v− ⇒ v+ to mean ∂αu = vα.



Pasting
We can similarly paste diagrams together. If u : U → X and v : V → X such that
∂+
k u = ∂−

k v , then

∂+
k U = ∂−

k V V

U U#kV

X

v

u
⌟

u#kv

Definition 3.1:

If U is an n-dim atom a map u : U → X is an n-cell
If U is an n-dim round molecule a map u : U → X is an n-round diagram
If U is an n-dim molecule a map u : U → X is an n-diagram.



Pasting: picture

•

• • • • • •

•

• • • • • •

X

v
⌟

u

u#1v



Unit(or)s
For any diagram u : U → X , and a collapse p : V ↠ U, we can take a unit on u by:

V U Xp u

Example:
x

If u : I⃗ → X is y

and p : U ↠ I⃗ is • •

• •

then u ◦ p : U → X is x

y

u

u u
1u



Unitors: other example

x

If u : I⃗ → X is y

and p : U ↠ I⃗ is • •

• • •

then u ◦ p : U → X is x

y y

u

u u

1y
ρu



What is an equivalence?
We want to compare two n-cells x , y : U → X , but asking “is x = y ?” is too strong.
Idea: replace = by ≃, a looser equivalence relation.

If x = y , it is necessary that ∂x = ∂y i.e. x and y are parallel

For x ≃ y , a prerequisite is ∂x = ∂y i.e. x and y have to be parallel

In picture, we want to fill:

x = y x ≃ y

a b a b
x

y

x

y

?

Definition 3.2: Let x , y : U → X be two parallel n-cells. We say that x ≃ y if there
exists an (n + 1)-cell h : x ⇒ y , which is an equivalence.



What is an equivalence, in a bicategory?

Definition 3.3: Let C be a bicategory. We say that a 1-cell f : x → y is an equivalence
if:
1. there exists a 1-cell f ′ : y → x , and two 2-cells h : f ∗0 f ′ ⇒ 1x and

z : f ′ ∗0 f ⇒ 1y :

x x y y

y x

1x

f

1y

f ′f ′ f
h z

2. h and z are isomorphisms.

Notice: an isomorphism is nothing more but an an equivalence witnessed by an
equality.



Equivalences in diagrammatic sets

Definition 3.4: Let X be a diagrammatic set. We say that a n-cell u : x ⇒ y is an
equivalence if:
1. there exists a n-cell u′ : y ⇒ x , and two (n + 1)-cells h : u#n−1u′ ⇒ 1x and

z : u′#n−1u ⇒ 1y :

x x y y

y x

1x

u

1y

u′u′ u
h z

2. h and z are equivalences.

Little caveat: for this definition to work well, one should replace “cell” by “round
diagram”. In an (∞,∞)-category, this makes no difference.



More on equivalences

Recall: x ≃ y means that there exists an equivalence from x to y .

Theorem 3.1 (C., Hadzihasanovic):
• The relation ≃ is an equivalence relation;
• The pasting of equivalences is again an equivalence;
• If x ≃ y, and x is an equivalence, then y is an equivalence.

See [CH24b].



A new flavor of composition:

Composition in reflexive graphs:

∀n,∀(fi)1,...n x y1 y2 yn z

x z

f0 f1 fn

⟨f0#0f1#0...#0fn⟩

⟨−⟩

Composition in diagrammatic sets:

∀n, ∀(fi)1,...n y1 y2 yn

x z

f1
fnf0

∃⟨f0#0f1#0...#0fn⟩

∃c

where c is an equivalence.



Higher composition shape

By generalisation, for all round molecules U, we define the atom ⟨U⟩ := ∂−U ⇒ ∂+U,
in picture:

If U is • • • • • then ⟨U⟩ is • •

• • • •

If U is • • • • then ⟨U⟩ is • •

• •



Weak composites

Definition 3.5: Let X be a diagrammatic set, u : U → X be a round diagram.
A weak composite for u is:
1. a cell ⟨u⟩ : ⟨U⟩ → X parallel to u,
2. such that u ≃ ⟨u⟩.

In that case, we say that u has a weak composite.

A weak composite for the 1-round diagram w x y zf g h is
1. a 1-cell ⟨f #0g#0h⟩ : w ⇒ z ,

2. an equivalence c fitting in
x y

w z

g
hf

⟨f#0g#0h⟩

c



Other example

• •

• • • • X

•

• • • •

• • • • • •

• •

u

c : u⇒⟨u⟩

c ⟨u⟩



(∞,∞)-category: definition

Definition 3.6 (Hadzihasanovic): A diagrammatic set X is an (∞,∞)-category if

all round diagrams have a weak composite.

By extension, an (∞, n)-category is an (∞,∞)-category such that all cells of
dimension > n are equivalences.



What about unitality, associativity, exchange?

At first glance, an (∞,∞)-category is “just” a composition operation.



Unitality

Let u : x → y be a 1-cell, we constructed the 2-cell

x

y y
u u

1y

ρu

Theorem 3.2 (C., Hadzihasanovic):
1. The cell ρu is an equivalence, i.e u#01y ≃ u.
2. In fact, all degenerate cells are equivalences.

Meaning: all diagrammatic sets (hence all (∞,∞)-categories) are already “unital”.
Each surjection p : U ↠ V gives a “unit law” for diagrammatic sets.



Composition is unital

Let u : x ⇒ y be an n-cell, and ⟨u#n−11y ⟩ be a weak composite witnessed by c.

Proof.
Then ⟨u#n−11y ⟩

by c
≃ u#n−11y

by unitor
≃ u. Since ≃ is transitive, ⟨u#n−11y ⟩ ≃ u.

Picture proof.
For c ′ any weak inverse of c, we form the pasting of equivalences:

x y yu

⟨u#01y ⟩

u

1y
c′

ρu



Associativity

Consider the pasting of three 1-cells w f→ x g→ y h→ z in an (∞,∞)-category X .
Recall the following picture for reflexive graphs:

w x y z w x y z

w y z w x z

w z w z

f g h f g h

⟨f#0g⟩ h

⟨−⟩

f ⟨g#0h⟩
⟨−⟩

⟨⟨f#0g⟩#0h⟩ ⟨f#0⟨g#0h⟩⟩

⟨−⟩ ⟨−⟩



Associativity, cont.
• •

• •

• glue
↭ •

• •

•

•

•

•

g g

gh
h h

f

fg

(fg)h

f

f (gh)

g

gh

h

f

fg

f (gh)

(fg)h



Associativity, cont.

Theorem 3.3: There exists equivalences α and ξ filling the diagram:

•

•

•

•

g

h

f

f (gh)

(fg)h
∃α

∃ξ

Theorem 3.4 (C., Hadzihasanovic): More generally, in a diagrammatic set, every
appropriate horn admits such a filler.

Remark: this is the main result of [CH24b].



Summary

In a reflexive graph, there are boundaries we can do pastings and take units.
A composition law gives the structure of category provided it satisfies two axioms.

In a diagrammatic set, there are boundaries we can do pastings and take units.
A composition law gives the structure of (∞,∞)-category provided nothing.



Theory of (∞,∞)-categories



Functor

Definition 4.1: A functor f : X → Y between two (∞,∞)-categories is a natural
transformation of diagrammatic sets.

Remark 4.1: Functors preserves:
1. shapes of diagrams, i.e. (u : U → X ) 7→ (f (x) : U → Y );
2. boundaries and unit(or)s, (by naturality);
3. hence equivalences;
4. hence weak composites.



Equivalence of (∞,∞)-categories

Let f : X → Y be a functor. We say that f is an ω-equivalence if:

∀(u, v) : ∂U → X ∀y : f (u) ⇒ f (v)

b f (b)

a c f (a) f (c)

v2 f (v2)v1

u

f

f (v1)

f (u)

∃w : u⇒v y

such that y ≃ f (w).
i.e, f is essentially surjective at all dimension.
Notice, we can prove that if f (x) ≃ f (y) then x ≃ y , i.e. f is essentially injective.



Theorems

We can finally state the main results of [CH24a, CH24c].

Theorem 4.1 (C., Hadzihasanovic): For any n ∈ N ∪ {∞}, there exists a model
structure on diagrammatic sets where:
1. fibrant objects are exactly the (∞, n)-categories;
2. weak equivalences between (∞, n)-categories are exactly the ω-equivalences.

Theorem 4.2 (C., Hadzihasanovic): The model structure for (∞, 0)-categories is
Quillen equivalent to the classical model structure on simplicial sets.

Our theory of (∞, 0)-categories coincides with the classical theory of ∞-groupoids!



Further directions

• Does our notion of (∞, n)-categories coincides with the “classical” notions of
(∞, n)-categories?

• Semistrictification: composition go back to being an operation.
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Thanks!
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