Exercises, week 11.

This exercise sheet is made to be done in order. In particular, one should often refer to Exercise k to do Exercise *n* with $k < n$.

We recall the more general Bezout identity.

Theorem 1: Let $n, m \in \mathbb{Z}$, then there exists $\alpha, \beta \in \mathbb{Z}$ such that

 $\alpha n + \beta m = \gcd(n, m)$.

Recall also that for a finite group G, we the cardinality of *G* is called its order.

- **Exercise 1:** Let (G, \cdot) be a finite group, let $x \in G$ of order *n*. Let $k > 0$,
	- 1. Prove that $\langle x^k \rangle = \langle x^{\gcd(n,k)} \rangle$.
	- 2. Prove that $\mathrm{ord}(x^{\gcd(n,k)}) = \frac{n}{\gcd(n,k)}$.
	- 3. Conclude that $\mathrm{ord}(x^k) = \frac{n}{\mathrm{gcd}(n,k)}$.
	- 4. Let $k \in \mathbb{Z}/n\mathbb{Z}$, prove that $gcd(k, n) = 1$ if and only if k is a generator of $\mathbb{Z}/n\mathbb{Z}$.

Exercise 2: Let (G, \cdot, e) be a cyclic group, generated by *x*. Let $H \subset G$ be a subgroup.

1. Assume $H = \{e\}$. Show that *H* is a cyclic group.

Assume now that $H \neq \{e\}.$

- 2. Show that the set $\{n>0 \mid x^n \in H\}$ is not empty.
- 3. Call $m := \min\{n > 0 \mid x^n \in H\}$. Show that $H = \langle x^m \rangle$.
- 4. Conclude that all subgroup of a cyclic group are cyclic.

Exercise 3: Let (G, \cdot, e) be a cyclic group, generated by x. Let $n = |G|$, let *d* be a divisor of *n*.

- 1. Show that $\langle x^{\frac{n}{d}} \rangle$ is a subgroup of *G* of order *d*.
- 2. Let *H* be a subgroup of *G* of order *d*. Show that $H = \langle x^{\frac{n}{d}} \rangle$ (hint: Exercise [2\)](#page-0-0).
- 3. Find all the subgroups of *G*.

Exercise 4: Find all the subgroup of Z*/*12Z.

Exercise 5: Recall Euler's totient function, defined by

$$
\phi(n) := |\{k \mid 1 \le k \le n, \gcd(k, n) = 1\}|.
$$

Let *G* be a cyclic group of order *n*, generated by x . Let d be a divisor of n .

- 1. Let *H* be the only subgroup of *G* of order *d*. Suppose $z \in G$ with ord(z) = *d*, show that $z \in H$.
- 2. Deduce that *G* has $\phi(d)$ many elements of order *d*.
- 3. Show that

$$
G=\sum_{d|n}\{z\mid \operatorname{ord}(z)=d\},
$$

and that the union is disjoint.

4. Conclude by proving that

$$
n=\sum_{d|n}\phi(d).
$$