Exercises, week 12.

We recall the more general Bezout identity.
Theorem 1: Let $n, m \in \mathbb{Z}$, then there exists $\alpha, \beta \in \mathbb{Z}$ such that

$$
\alpha n+\beta m=\operatorname{gcd}(n, m)
$$

Exercise 1:

1. Find all the divisor of zero in $\mathbb{Z} / 12 \mathbb{Z}$.
2. Let $n \geq 2$. Find all the divisor of in $\mathbb{Z} / n \mathbb{Z}$.

Exercise 2: We define the

$$
\mathbb{Z}[\sqrt{2}]:=\{a+b \sqrt{2} \mid a, b \in \mathbb{Z}\} .
$$

1. Show that $\mathbb{Z}[\sqrt{2}]$ is a ring with the usual \times and + operation. In fact there is nothing special about 2: show that $\mathbb{Z}[\sqrt{n}]$ is a ring for all $n \in \mathbb{N}$.
2. Show that $3+2 \sqrt{2}$ is a unit in $\mathbb{Z}[\sqrt{2}]$.

Exercise 3: Let R be a commutative ring. An element $x \in R$ is called nilpotent if there exists some $n \geq 1$ such that $x^{n}=0$.

1. Let $\mathcal{N}:=\{r \in R \mid r$ is nilpotent $\}$. Show that \mathcal{N} is an ideal.
2. Let $r \in \mathcal{N}$. Show that $1-r \in R^{\times}$.

Exercise 4:

1. Find the reminder of 37^{49} when divided by 7 .
2. We want to find the reminder of $2^{2^{17}}+1$ when divided by 19 , we proceed in several steps.
(a) Show that there exists some $q \in \mathbb{N}$ such that $2^{17}=18 q+14$.
(b) Deduce that $2^{2^{17}}+1 \equiv 2^{14}[19]$
(c) Conclude.

Exercise 5: Let p be a prime number.

1. Let $x, y \in \mathbb{Z} / p \mathbb{Z}$, such that $x y \equiv 0[p]$. Prove that $x=0$ or $y=0$.
2. Let $0 \leq k \leq p-1$ such that $k^{2} \equiv 1[p]$. Show that $k=1$ or $k=p-1$.

Exercise 6: Let X be a set, call 2^{X} its power set. Let $A \in 2^{X}$, we call $A^{c}:=X \backslash A$. Let $A, B \in 2^{X}$, we define

$$
A+B:=\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)
$$

and

$$
A \cdot B:=A \cap B
$$

Show that $(R, \cdot,+)$ is a ring, whose 0,1 , and additive inverse you will have to find.

