Exercises, week 3.

Exercise 1: Prove that, for all sets X, Y, Z, we have

$$
X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z)
$$

Prove that for all $A, B \subseteq X$, we have

$$
X \backslash(A \cup B)=(X \backslash A) \cap(X \backslash B)
$$

Does it remind you of something?
We see what happens if we consider Ω the set of all sets: we can break math.
Exercise 2: Let Ω be the set of all sets. We define by replacement

$$
\Omega_{0}:=\{X \in \Omega \mid X \notin X\} .
$$

1. Prove that if $\Omega_{0} \in \Omega_{0}$ then $\Omega_{0} \notin \Omega_{0}$.
2. Prove that if $\Omega_{0} \notin \Omega_{0}$ then $\Omega_{0} \in \Omega_{0}$.
3. Deduce that math is broken.

Note: therefore, we cannot consider the set of all sets, and we have to be careful to use replacement in general. However, such subtelties do generally do not arise in practice.

Exercise 3: Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the function defined by $f(x)=2 x$. What is the set $f(\mathbb{N})$? Let \mathcal{O} be the subset of \mathbb{N} constituted of odd numbers. What is the set $f^{-1}(\mathcal{O})$?

Exercise 4: Let $f: X \rightarrow Y$ be a function, let $A, A^{\prime} \subseteq X$ and $B, B^{\prime} \subseteq Y$. Prove some of the following identities (they are very useful to know, or at least remember they exist).

- $f\left(A \cup A^{\prime}\right)=f(A) \cup f(A)$.
- $f\left(A \cap A^{\prime}\right) \subseteq f(A) \cap f\left(A^{\prime}\right)$.
- $f^{-1}\left(B \cup B^{\prime}\right)=f^{-1}(B) \cup f^{-1}\left(B^{\prime}\right)$.
- $f^{-1}\left(B \cap B^{\prime}\right) \subseteq f^{-1}(B) \cap f^{-1}\left(B^{\prime}\right)$.
- $f^{-1}(f(X))=X$.
- $f^{-1}(f(A)) \supseteq A$.
- $f\left(f^{-1}(Y)\right)=f(X)$.
- $f\left(f^{-1}(B)\right) \subseteq B$.

It is even a better exercise to try to come up with a example where the full equality fails, for instance provide a function where we do not have $f(A \cap B)=f(A) \cap f(B)$. For a more exhaustive list of these relations, see this Wikipedia page.

