Exercises, week 9.

Exercise 1: Let G be a group. Let $x, y, z \in G$. Prove that if $x \cdot y = z \cdot y$, then x = z.

Definition 1: A group G is *abelian* if for all $x, y \in G$, we have

 $x \cdot y = y \cdot x.$

Exercise 2: Let G be a group in which for all $x, x \cdot x = e$. Prove that G is abelian.

Definition 2: Let $x \in G$ be an element of a group. Let $n \in \mathbb{Z}$, we define by induction x^n . If n = 0, we let $x^0 = e$. Suppose x^n has been defined, we define x^{n+1} to be $x^n \cdot x$. Suppose n < 0, then we define $x^n = (x^{-n})^{-1}$.

Exercise 3: Check that this definition satisfies the usual laws of powers, that is

- 1. $x^n x^m = x^{n+m}$
- 2. $(x^n)^m = x^{nm}$
- 3. $x^{-n} = (x^n)^{-1}$

Exercise 4: Let G be a group, let $n, m \in \mathbb{N}$ such that gcd(m, n) = 1. Suppose there exists an $x \in G$ with $x^m = e$. Prove that there exists $y \in G$ such that $y^n = x$.

Exercise 5: Let $f: G \to H$ be a group morphism. Let $x \in G$, show that

$$f(x^{-1}) = f(x)^{-1}$$
.

Exercise 6:

- 1. Let G be a group. Show that $id_G: G \to G$ is a group morphism.
- 2. Let $f:G\to H$ and $g:H\to K$ be group morphisms. Show that $g\circ f:G\to H$ is a group morphism.

Exercise 7: Let X be a set. Show that the set of functions:

 $\operatorname{Bij}(X) := \{ f : X \to X \mid f \text{ is bijective } \},\$

is a group, whose laws and neutral element you will have to find.