Homework 1.

This homework should be manageable, but it is not telling any story.

Exercise 1: In this exercise, we permute connectives and quantifiers when we can, and give counter-examples when we cannot. Let P(x), Q(x) be mathematical statement depending on a free variable $x \in X$.

- 1. Permuting \forall and \land , both directions.
 - (a) Prove that if $\forall x \in X, P(x)$ and $\forall x \in X, Q(x)$, then $\forall x \in X, P(x) \land Q(x)$.
 - (b) Prove that if $\forall x \in X, P(x) \land Q(x)$, then $\forall x \in X, P(x)$ and $\forall x \in X, Q(x)$.
- 2. Permuting \exists and \lor , both directions.
 - (a) Prove that if $\exists x \in X, P(x)$ or $\exists x \in X, Q(x)$, then $\exists x \in X, P(x) \lor Q(x)$.
 - (b) Prove that if $\exists x \in X, P(x) \lor Q(x)$, then $\exists x \in X, P(x) \text{ or } \exists x \in X, Q(x)$.
- 3. Permuting \forall and \lor , one direction and failing.
 - (a) Prove that if $\forall x \in X, P(x) \text{ or } \forall x \in X, Q(x), \text{ then } \forall x \in X, P(x) \lor Q(x).$
 - (b) Let E(n) means "n is even" and O(n) means "n is odd". Prove that $\forall n \in \mathbb{N}, E(n) \lor O(n)$, but that it is not the case that $\forall n \in \mathbb{N}, E(n)$ or $\forall n \in \mathbb{N}, O(n)$
- 4. Permuting \exists and \land , one direction and failing.
 - (a) Prove that if $\exists x \in X, P(x) \land Q(x)$, then $\exists x \in X, P(x)$ and $\exists x \in X, Q(x)$.
 - (b) Let O(n) means "n = 1 " and T(n) means "n = 2". Prove that $\exists n \in \mathbb{N}, O(n)$ and $\exists n \in \mathbb{N}, T(n)$, but that it is not the case that $\exists n \in \mathbb{N}, O(n) \wedge T(n)$.
- 5. Permuting \exists and \forall , one direction and failing. Let R(x, y) be a mathematical statement depending on a variable $x \in X$ and a variable $y \in Y$.
 - (a) Prove that if $\exists x \in X, \forall y \in Y, R(x, y)$, then $\forall y \in Y, \exists x \in X, R(x, y)$.
 - (b) Let X be a set with two distincts elements. Let R(x, x') be the statement saying "x = x'". Prove that $\forall x \in X, \exists x' \in X, R(x, x')$, but that it is not the case that $\exists x \in X, \forall x' \in X, R(x, x')$.

Remark 1: The real reasons why we can sometimes permute, and sometimes not, can be found in the unmanageable homework.

Exercise 2: Let X be a set, and let $A \subseteq X$.

1. Prove that $X = A \cup (X \setminus A)$, and that $A \cap (X \setminus A) = \emptyset$.

We can do the exclusive-or on sets too:

Definition 2: Let *X*, *Y* be two sets. We define $X \oplus Y$ to be the set

$$X \oplus Y := (X \setminus Y) \cup (Y \setminus X)$$

Exercise 3: Let X, Y, Z be sets.

- 1. Prove that $X \oplus \emptyset = X$.
- 2. Prove that $X \cap (Y \oplus Z) = (X \cap Z) \oplus (X \cap Y)$.
- 3. Prove that $X \oplus Y = \emptyset$ if and only if X = Y.

Exercise 4: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove that

- 1. If $g \circ f$ is injective, then f is injective.
- 2. If $g \circ f$ is surjective, then g is surjective.

3. If $g \circ f$ is bijective, then f is injective and g is surjective.

Exercise 5: For the following functions, if you think they are (injective—surjective—bijective), prove it. If you think they are not (injective—surjective—bijective), prove it too.

1.

2.

3.

 $egin{aligned} f:\mathbb{N} o\mathbb{N} imes\mathbb{N}\ n\mapsto(n,n)\ &f:\mathbb{N} imes\mathbb{N} o\mathbb{N}\ &(n,m)\mapsto n\ &(n,m)\mapsto n\ &f:\mathbb{N} imes\mathbb{N} o\mathbb{N} imes\mathbb{N}\ &(n,m)\mapsto(m,n). \end{aligned}$

Remark: by (injective—surjective—bijective), we mean that you have to do the work for injective, surjective, and bijective.

Exercise 6: Let X be a set.

1. Find an equivalence relation \sim on X such that $X/_{\sim}$ is

 $\{\{x\} \mid x \in X\}.$

2. Find an equivalence relation \sim on X such that $X/_{\sim}$ is

 $\{X\}.$