Homework 1.

This homework should be manageable, but it is not telling any story.
Exercise 1: In this exercise, we permute connectives and quantifiers when we can, and give counter-examples when we cannot. Let $P(x), Q(x)$ be mathematical statement depending on a free variable $x \in X$.

1. Permuting \forall and \wedge, both directions.
(a) Prove that if $\forall x \in X, P(x)$ and $\forall x \in X, Q(x)$, then $\forall x \in X, P(x) \wedge Q(x)$.
(b) Prove that if $\forall x \in X, P(x) \wedge Q(x)$, then $\forall x \in X, P(x)$ and $\forall x \in X, Q(x)$.
2. Permuting \exists and \vee, both directions.
(a) Prove that if $\exists x \in X, P(x)$ or $\exists x \in X, Q(x)$, then $\exists x \in X, P(x) \vee Q(x)$.
(b) Prove that if $\exists x \in X, P(x) \vee Q(x)$, then $\exists x \in X, P(x)$ or $\exists x \in X, Q(x)$.
3. Permuting \forall and \vee, one direction and failing.
(a) Prove that if $\forall x \in X, P(x)$ or $\forall x \in X, Q(x)$, then $\forall x \in X, P(x) \vee Q(x)$.
(b) Let $E(n)$ means " n is even" and $O(n)$ means " n is odd". Prove that $\forall n \in \mathbb{N}, E(n) \vee O(n)$, but that it is not the case that $\forall n \in \mathbb{N}, E(n)$ or $\forall n \in \mathbb{N}, O(n)$
4. Permuting \exists and \wedge, one direction and failing.
(a) Prove that if $\exists x \in X, P(x) \wedge Q(x)$, then $\exists x \in X, P(x)$ and $\exists x \in X, Q(x)$.
(b) Let $O(n)$ means " $n=1 "$ and $T(n)$ means " $n=2 "$. Prove that $\exists n \in \mathbb{N}, O(n)$ and $\exists n \in \mathbb{N}, T(n)$, but that it is not the case that $\exists n \in \mathbb{N}, O(n) \wedge T(n)$.
5. Permuting \exists and \forall, one direction and failing. Let $R(x, y)$ be a mathematical statement depending on a variable $x \in X$ and a variable $y \in Y$.
(a) Prove that if $\exists x \in X, \forall y \in Y, R(x, y)$, then $\forall y \in Y, \exists x \in X, R(x, y)$.
(b) Let X be a set with two distincts elements. Let $R\left(x, x^{\prime}\right)$ be the statement saying $" x=x^{\prime} "$. Prove that $\forall x \in X, \exists x^{\prime} \in X, R\left(x, x^{\prime}\right)$, but that it is not the case that $\exists x \in X, \forall x^{\prime} \in X, R\left(x, x^{\prime}\right)$.

Remark 1: The real reasons why we can sometimes permute, and sometimes not, can be found in the unmanageable homework.

Exercise 2: Let X be a set, and let $A \subseteq X$.

1. Prove that $X=A \cup(X \backslash A)$, and that $A \cap(X \backslash A)=\emptyset$.

We can do the exclusive-or on sets too:
Definition 2: Let X, Y be two sets. We define $X \oplus Y$ to be the set

$$
X \oplus Y:=(X \backslash Y) \cup(Y \backslash X)
$$

Exercise 3: Let X, Y, Z be sets.

1. Prove that $X \oplus \emptyset=X$.
2. Prove that $X \cap(Y \oplus Z)=(X \cap Z) \oplus(X \cap Y)$.
3. Prove that $X \oplus Y=\emptyset$ if and only if $X=Y$.

Exercise 4: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Prove that

1. If $g \circ f$ is injective, then f is injective.
2. If $g \circ f$ is surjective, then g is surjective.
3. If $g \circ f$ is bijective, then f is injective and g is surjective.

Exercise 5: For the following functions, if you think they are (injective-surjective-bijective), prove it. If you think they are not (injective-surjective-bijective), prove it too.
1.

$$
\begin{aligned}
f: \mathbb{N} & \rightarrow \mathbb{N} \times \mathbb{N} \\
n & \mapsto(n, n)
\end{aligned}
$$

2.

$$
\begin{aligned}
f: \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{N} \\
(n, m) & \mapsto n
\end{aligned}
$$

3.

$$
\begin{aligned}
f: \mathbb{N} \times \mathbb{N} & \rightarrow \mathbb{N} \times \mathbb{N} \\
(n, m) & \mapsto(m, n)
\end{aligned}
$$

Remark: by (injective - surjective-bijective), we mean that you have to do the work for injective, surjective, and bijective.

Exercise 6: Let X be a set.

1. Find an equivalence relation \sim on X such that X / \sim is

$$
\{\{x\} \mid x \in X\} .
$$

2. Find an equivalence relation \sim on X such that X / \sim is
$\{X\}$.
