Diagrammatic sets as a model of homotopy types

Clémence Chanavat¹

July 9, 2024

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

¹j.w.w. Amar Hadzihasanovic

Diagrammatic sets as a model of homotopy types the presheaves over the shapes of this morning have a model structure which is Quillen equivalent to "the one" on topological spaces

イロト イ戸ト イミト イミト ヨー のくぐ

- 1. Brief reminder of model structures.
- 2. Model structures on categories of presheaves according to Cisinski.

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

- 3. Diagrammatic sets.
- 4. Application: Model structure on diagrammatic sets.

Model structures

<ロト < 2 × 4 =

Let C be a category. Let W be a class of maps in C such that it would be nice if they were isomorphisms.

Definition 1.1: The *localisation* of C at W is the best category $C[W^{-1}]$ pretending that all maps in W are isomorphisms.

A 回 > 4 □ > 4

Construction: formally add all the inverses on the underlying graph; take the free category; quotient by the appropriate compositions. *Problem:* it always exists but is very hard to compute in practice.

Model structures

Let C be a (co)complete category. A *model structure* is the data of three classes of maps:

- 1. The weak equivalences² W: the maps we want to invert;
- 2. The cofibrations C: the accompanying "nice injections";
- 3. The fibrations F: the accompanying "nice surjections";

Such that:

 $(C, F \cap W)$ and $(C \cap W, F)$

are weak factorisation systems.

²contain iso, and have 2-out-of-3

The squares to keep in mind

∈**F**

Localisation and Quillen adjunctions

Let $(\mathcal{C}, W, \mathcal{C}, \mathcal{F})$, $(\mathcal{D}, W', \mathcal{C}', \mathcal{F}')$ be a model categories.

- We can form the localisation $\mathcal{C}[W^{-1}]$ and $\mathcal{D}[W'^{-1}]$.
- Let $L: \mathcal{C} \to \mathcal{D}$ be a functor. When does it induce a functor

 $\mathbb{L}\colon \mathcal{C}[W^{-1}]\to \mathcal{D}[W'^{-1}]?$

A 回 > 4 □ > 4

Suffices: L left adjoint, and preserves cofibrations and acyclic cofibrations.

- We call it a *left Quillen functor*.
- If \mathbb{L} is an equivalence: *Quillen equivalence*.

Examples

	weak equivalences	cofibrations	acyclic cofibrations
Тор	homotopy equivalences	(retract of)	(generated by)
		relative cell complexes	$D^n \hookrightarrow [0,1] imes D^n$
sSet	combinatorial homotopy equivalences ³	(retract of)	(generated by) $\Lambda_n^k \hookrightarrow \Delta^n$
		combinatorial	
		relative cell complexes ⁺	n

The geometric realisation

$$|-|$$
: sSet \rightarrow Top

is a left Quillen equivalence. *Title of this talk 57 years ago:*

Simplicial sets as a model of homotopy types.

³only true between fibrant object

⁴i.e. monomorphisms

Definition 1.2: A simplicial set X is an ∞ -groupoid if

$$\begin{array}{c} \Lambda_n^k \xrightarrow{\forall} X \\ \downarrow \\ \Delta^n \end{array}$$

that is, $X \rightarrow \mathbf{1}$ is a fibration in the model structure!

Theorem 1.1: Up to homotopy, ∞ -groupoids and topological spaces are the same.

<ロト < 同ト < 三ト < 三ト < 三ト 三三 のへの</p>

Cisinski's model structures

<ロト < 回 ト < 回 ト < 回 ト < 回 ト < 回 ト < 回 ト < 回 へ の へ の</p>

Let \mathcal{C} be a (small) category.

• *Question:* How to put a model structure on $\widehat{C} := [C^{op}, \mathbf{Set}]$?

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

• Answer: Just give a homotopical structure!

It consists of two things:

- 1. An exact cylinder to define notion of homotopy,
- 2. A class of anodyne extensions to extend homotopies.

Cylinder

A cylinder is an endofunctor

$$\mathsf{I}\colon \widehat{\mathcal{C}}\to \widehat{\mathcal{C}}$$

with three natural transformations:

- $\iota^{\alpha} \colon \operatorname{id}_{\widehat{\mathcal{C}}} \to \mathsf{I}, \ \alpha \in \{-,+\}$ the two sections
- $\sigma: I \to id_{\widehat{\mathcal{C}}}$ the projection

Such that for all $\alpha \in \{-,+\}$, $X \in \widehat{\mathcal{C}}$:

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Exact cylinder

A cylinder $(I, \iota^{\alpha}, \sigma)$ is *exact* if furthermore:

- I preserves small colimits and monomorphisms;
- some square is a pullback.

Example 2.1: The endofunctor $[0, 1] \times -: \text{Top} \to \text{Top}$ together with, for all $X \in \text{Top}$,

$$\iota_X^- \colon X \hookrightarrow [0,1] \times X$$

 $x \mapsto (0,x)$
 $\iota_X^+ \colon X \hookrightarrow [0,1] \times X$
 $x \mapsto (1,x)$

and

$$\sigma_X \colon [0,1] \times X \twoheadrightarrow X$$
$$(i,x) \mapsto x$$

A 回 > 4 □ > 4

is an exact cylinder^a.

^aif we pretend that **Top** is a category of presheaves

Homotopy

Let $f, g: X \to Y$ be two natural transformations in $\widehat{\mathcal{C}}$, a *homotopy* from f to g is a map $\phi: IX \to Y$ such that

Anodyne extensions

A class of maps **An** is called class of *anodyne extensions* if AN0 It is generated by a set;

AN1 For all monomorphisms $m \colon K \hookrightarrow L$ in $\widehat{\mathcal{C}}$, for all $\alpha \in \{-, +\}$, the dashed map

is in An. This is the cylinder filling property;

Anodyne extensions

AN2 For all $j: K \hookrightarrow L \in \mathbf{An}$, the dashed map

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

is in An. This is the equivalence of the cylinder fillings.

There is a model structure on $\widehat{\mathcal{C}}$ where

- cofibrations = monomorphisms,
- anodyne extensions \subseteq acyclic cofibrations,
- an object is fibrant iff it has the r.l.p. against anodyne extensions,
- weak equivalences between fibrant objects are exactly the homotopy equivalences.

Interlude

Which is which?

regular directed complex

<ロト < 回 > < 臣 > < 臣 > 三 の < @

Boundaries

Let U be the molecule:

What is:

Is it round?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

Gray product

Let \vec{l} be $\bullet \to \bullet$, i.e. the ogpos

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへで

Diagrammatic sets

<ロト < 2 × 4 =

Maps of regular directed complexes

Let P, Q be **RDCpx**. A map $f: P \rightarrow Q$ is

- an order-preserving map f of the underlying posets,
- for all $n \ge 0$, $\alpha \in \{-,+\}$, $x \in P$

$$f(\partial_n^{lpha} x) = \partial_n^{lpha} f(x),$$

some finality conditions.

Observe: *injections are nice, surjections are not*. Idea: impose a further condition.

• which is aslo a Grothendieck fibration of the underlying posets.

(aka f is cartesian)

More on cartesian maps

• Injections were already cartesian.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の へ ()・

- Less surjections.
- \otimes, \star are still monoidal!

Theorem 4.1: The category \odot with cartesian map is an Eilenberg–Zilber category.

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

In particular:

- 1. epi-mono factorisation,
- 2. no non-identity automorphism,
- 3. each surjection has a section, and is entirely determined by them!

Definition 4.1: A *diagrammatic set* is a presheaf on \odot .

Proposition 4.1: The Yoneda embedding $\odot \hookrightarrow \odot$ **Set** factors through:

 $\odot \longrightarrow \textit{molecules} \longrightarrow \textbf{RDCpx} \longrightarrow \odot \textbf{Set}$

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Building a cylinder

Day convolution

"Recall": let $(\mathcal{C}, \otimes, \mathbf{1})$ monoidal, we can make $\widehat{\mathcal{C}}$ into a monoidal category $(\widehat{\mathcal{C}}, \otimes, \mathbf{1})$ such that:

- Yoneda $\mathcal{C} \hookrightarrow \widehat{\mathcal{C}}$ is strong monoidal,
- $-\otimes$ is biclosed.

If $X, Y \in \widehat{\mathcal{C}}$, then

$$X\otimes Y=\int^{c,d\in \mathcal{C}}X(c) imes Y(d) imes \mathcal{C}(-,c\otimes d).$$

Since $(\odot, \otimes, \mathbf{1})$ is monoidal, we can take Gray product of presheaves!

<ロ> < 団> < 団> < 三> < 三> < 三> < □> < □> < ○<</p>

Cylinder object

So we define:

$$\vec{l} \otimes -: \odot$$
Set $\rightarrow \odot$ Set
And factoring id: $\mathbf{1} \rightarrow \mathbf{1}$, $\alpha \in \{-,+\}$ as
 $\mathbf{1} \stackrel{\iota^{\alpha}}{\longrightarrow} \vec{l} \stackrel{!}{\twoheadrightarrow} \mathbf{1}$

we have, for all $X \in \odot$ **Set**,

$$X \stackrel{\iota^{lpha}_X}{\hookrightarrow} \vec{l} \otimes X \stackrel{\sigma_X}{\twoheadrightarrow} X$$

 $\vec{l} \otimes -$ is a cylinder

Exact cylinder object

Lemma 5.1: The cylinder $\vec{l} \otimes -$ is exact.

◆□ > ◆□ > ◆ □ > ● □ >

A corollary of [Cis06, Corollaire 8.2.16]:

Corollary 5.1: Let C be an Eilenberg–Zilber category with a terminal object. Let $(I, \iota^{\alpha}, \sigma)$ be an exact cylinder. Suppose that for all $c \in C$, the map

$$\sigma_{c} \colon \mathsf{I}c \twoheadrightarrow c$$

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

is representable. Then \widehat{C} models homotopy types. As a corollary of the corollary of [Cis06, Corollaire 8.2.16]:

Theorem 5.1: Diagrammatic sets model homotopy types. There is a model structure on \odot Set whose homotopy category are the homotopy types. The Quillen equivalence with sSet is given by the following left Kan extension, called the diagrammatic subdivion:

What is this model structure?

Let U be an atom, let $V \sqsubseteq \partial^{\alpha} U$ be a rewritable submolecule of the input or output boundary. The *horn* defined by U, V is

 $\Lambda^{\boldsymbol{V}}_{\boldsymbol{U}} := \partial \boldsymbol{U} \backslash (\boldsymbol{V} \backslash \partial \boldsymbol{V}).$

Let

$$J := \{\lambda_U^V \colon \Lambda_U^V \hookrightarrow U\}.$$

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Horns generate anodyne extensions

Proposition 6.1: The set J of horns generates a class of anodyne extensions.

<ロト 4 回 ト 4 三 ト 4 三 ト 一 三 の 0 0 0</p>

Proof.

AN0 by definition.

AN1 by picture.

AN2 by picture.

So there is another model structure on \odot Set...

- which is seen to be monoidal for $-\otimes -$;
- whose acyclic cofibrations are exactly the anodyne extensions!

<ロト < 部 ト < 三 ト < 三 ト 三 の < で</p>

Theorem 6.1: The two model structures are the same.

Aparté: back to ∞ -groupoids

Definition 6.1: A diagrammatic set X is an ∞ -groupoid if

$$\bigwedge_U^V \xrightarrow{\forall} X$$
$$\bigcup_{u \in U^{-1}} X$$

that is, $X \rightarrow \mathbf{1}$ is a fibration in the model structure!

Theorem 6.2: Up to homotopy, ∞ -groupoids and topological spaces are the same.

<ロト < 同ト < 三ト < 三ト < 三ト 三三 のへの</p>

Bonus: another Quillen equivalence

The following left Kan extension

is a left Quillen equivalence! Proof:

useful to prove that the cartesian product of diagrammatic sets is homotopical

・ロト 《四下 《日下 《日下 《日下

Conclusion

- \odot is a well behaved category of shapes, with a representable cylinder;
- The model structure that comes automatically from this models homotopy types;
- With a further study, we find
 - acyclic cofibrations are generated by the horns;
 - the Gray product is monoidal;
 - there are two Quillen equivalences with simplicial sets

 $\mathsf{sSet}\leftrightarrows \odot \mathsf{Set}\leftrightarrows \mathsf{sSet}$

A 回 > 4 □ > 4

factorising the Quillen equivalence $\mathrm{Sd}\dashv\mathrm{Ex}$

References I

D.-C. Cisinski, *Les préfaisceaux comme modèles des types d'homotopie*, Astérisque, no. 308, Société mathématique de France, Paris, 2006 (fre).

Thanks!

